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• Thanks to Seonhwa Kim and Jinsung Park for inviting me to give

this talk.

• Many people have contributed to the mathematics I will discuss. I

have tried to cite them all, but I may have gaps. My apologies!

• Later I will mention some highest-weight modules. I have tried to

get the conventions to match [Bla+16] but I may not have: look at

their paper for the right ones.
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Plan of the talk

1. Reminders on TQFT (Topological Quantum Field Theory)

2. Extension to geometric (quantum) field theory

3. An abelian example: the BCGP invariant

4. Towards nonabelian SL2(C)-field theory

5. Connections to hyperbolic topology

2



Topological field theories

Topological field theories

Geometric field theories

Abelian SL2(C)-field theory

Towards nonabelian SL2(C)-field theory
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TQFT

• A d+ 1 dimensional TQFT F is a way of assigning manifold

invariants that can be cut into pieces:

• (d+ 1)-manifolds are assigned complex numbers F(M)

• d-manifolds are assigned vector spaces F(X)

• cobordisms ∂M = X
∐

Y are linear maps F(M) : F(X) → F(Y)

• Formally: Let Cobd be the category whose

objects are oriented d-manifolds

morphisms are oriented cobordisms between them

and Vect be the category with

objects C-vector spaces
morphisms linear maps

Then a d+ 1 dimensional TQFT is a functor F : Cobd → Vect.

• Both categories are monoidal with duals and F should respect

these structures.
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Cutting and pasting

• Say we cut M into two pieces N1 ∪ N2 along X.

• Since F(∅) = C is monoidal unit, we get ingredients:

• F(N1) : C → F(X) (vector)

• F(N2) : F(X) → C (covector)

• Composition

F(N2)(F(N1)) = F(M) ∈ C

is evaluating vector against dual vector

• More generally, can compute F(M) by cutting M into simple

pieces Nj then composing resulting tensors.
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Example: d = 1

Say we want to define a 1+ 1 dimensional TQFT.

• Only object in Cob1 is S
1, so need a vector space A = F(S1).

• Cobordisms will be maps between tensor powers of A and A∗

• For example, depending on orientation the disk D2 is a cobordism

b : ∅ → S1 or d : S1 → ∅
• Then F(b) : C → A is a chosen vector and F(d) : A → C is

chosen covector.
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Example: d = 1

More interesting cobordisms come from pairs of pants.

• Left is a map A⊗ A → A, right is a map A → A⊗ A.

• By using topological relations, there are compatibility conditions

on these.

• Turn out to make A into a Frobenius algebra
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d = 2

• In higher dimensions, much more complicated, because

manifolds are much more complicated.

• We mostly focus on d = 2, so we assign vector spaces to surfaces

and complex numbers to closed 3-manfiolds.

• Famous example: the Witten-Reshetikhin-Turaev theory is a 2+ 1

dimensional TQFT
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Witten’s version of WRT

Definition ([Wit89])

For a flat su2 connection A on M, consider Chern-Simons invariant as

a Lagrangian

L(A) = 1

4π

∫
M

tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
Then the path integral

Z(M) =

∫
exp(ikL(A)) DA

over all connections A gives value of a TQFT via Fk(M) = Z(M)/Z(S3).

Integer k is level.

• Can extend to case where M has an embedded link L

• This is not mathematically rigorous

• However, can use physical arguments to determine how Z(M)

changes under surgery on L, allowing computation 9



Reshetikhin-Turaev’s version of WRT

Pick framed link L in S3 representing M via Dehn surgery.

• For any labeling of components Lj of L by modules Vj of quantum

group Uq(sl2), use R-matrix to construct invariant F(L; {Vj}).
Jones polynomial is a special case of these.

• When q = ζ is root of unity (order is related to level k) can get

modular category of Uζ(sl2)-modules with special properties

• By taking weighted sum of all labellings of L by modules, get

invariant Fk(M) of M.

• Physical arguments identify Fk(M) with Witten’s Z(M)/Z(S3).

• Fk can be extended to a full 2+ 1 TQFT.

Details in [RT91]. A good exposition is [BK00].
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Manifolds with links

• In both cases, natural to extend to 3-manifolds M with an

embedded link L (embedded copies of S1)

• Related to the fact that these are extended TQFTs: can be

extended to cobordism 2-category

• When L = ∅, recover usual invariant: F(M, ∅) = F(M)

• If M has nonempty boundary, we allow tangles that start or end

on the boundary components

• Objects of our category are then surfaces with marked points

where tangles can start or end
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Geometric field theories

Topological field theories

Geometric field theories

Abelian SL2(C)-field theory

Towards nonabelian SL2(C)-field theory
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Geometric structures on manifolds

Definition

Let G be a group (usually a Lie group) and M be a manifold. A

G-structure is a representation ρ : π1(M) → G considered up to

conjugation.

Example

G = PSL2(C) is the isometry group of hyperbolic 3-space, so

hyperbolic structures on M are PSL2(C)-structures.

We focus on G = SL2(C) and 3-manifolds. We think of a

SL2(C)-structure as a generalized hyperbolic structure.
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Why hyperbolic structures?

• Hyperbolic 3-manifolds are large, interesting class; these have

PSL2(C)-structures that are discrete and faithful

• More generally, studying moduli space of SL2(C)-structures
(character variety) on M gives important topological information

about M

• For us, turns out to be convenient to use double cover SL2(C)
instead.
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Geometric field theory

Definition

Cob
G
d is the category with

objects d-manifolds X with G-structures ρ : π1(X) → G

morphisms cobordisms M with G-structures ρ : π1(M) → G

To compose two morphisms we require that the G-structures match

after our identification.

Definition

A G-field theory is a functor F : CobG
d → Vect depending only on the

conjugacy classes of the G-structures.

Turaev [Tur10] calls these homotopy quantum field theories with

target K(G, 1).
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Geometric 3-manifold invariants

Return to G = SL2(C) and d = 2. If F is a SL2(C)-field theory in

dimension 2+ 1, then for each SL2(C)-structure ρ on a 3-manifold we

get

F(M, ρ) ∈ C

If ρ′ is conjugate to ρ then F(M, ρ) = F(M, ρ′).
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Examples

Torsion

Reidemeister torsion τ(M, ρ) twisted by ρ can be thought of as value

of a GFT.

Later we will discuss how to extend this to a GFT (instead of just for

closed M.)

Complex volume

Natural to consider hyperbolic volume and Chern-Simons invariant

as parts of a complex volume

cVol(M, ρ) = Vol(M, ρ) + iCS(M, ρ) ∈ C/π2iZ

At least for M with torus boundary, can cut and glue cVol [KK93].
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Another perspective

Definition

We write XM for the character variety of M. Up to technicalities XM is

the moduli space of SL2(C)-structures on M.

• Now F assigns each 3-manifold M a function F(M) on its

character XM.

• Much more powerful than a TQFT: instead of one number we get a

function on an interesting algebraic variety!
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Extracting simpler invariants

However, XM can be complicated. We might want something simpler.

Ways to do this:

• Pick trivial structure ρtriv ∈ XM with ρtriv(x) = 1 for all x

• If M is hyperbolic, there is a canonical structure ρhol by Mostow

rigidity. F(M, ρhol) is a topological invariant of M for any GFT F .

• Restrict to simpler part AM ⊂ XM, say ρ with abelian image.
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Abelian SL2(C)-field theory

Topological field theories

Geometric field theories

Abelian SL2(C)-field theory

Towards nonabelian SL2(C)-field theory
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A simpler example

• Constructing a full SL2(C)-field theory is hard!

• As a first step, let’s instead restrict to ρ : π1(M) → SL2(C) with
abelian image. After diagonalizing, this means

ρ(x) =

(
t 0

0 t−1

)
, t ∈ C \ {0}

for every x ∈ π1(M).

• Can think of this as restricting to GL1(C) subgroup of SL2(C)
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Abelian representations

Definition

For M a 3-manifold with an embedded link L, write

AM,L = H1(M \ L;C/2Z).

We think of AM,L as part of the character variety: if ω ∈ AM,L and

x ∈ π1(M \ L), then

ρ(x) =

(
exp(πiω(x)) 0

0 exp(−πiω(x))

)

(Actually slightly more: ω(x) logarithm of eigenvalues of x)
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The BCGP field theory

Theorem (Blanchet, Costantino, Geer, and Patureau-Mirand [Bla+16])

Pick an even integer 2r, r 6≡ 0 (mod 4). For each (M, L, ω) there is an

invariant

Vr(M, L, ω) ∈ C

Furthermore, this invariant extends to a geometric quantum field

theory on a category with

objects surfaces with embedded marked points and compatible

classes ω

morphims cobordisms between surfaces with embedded tangles

between the points, again with compatible classes ω
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Special cases

Say M = S3 and K is a knot. Then AS3,K
∼= C/2Z, so ω is a single

number λ. We see that

Vr(S
3, K, ω) = ∇r(K, λ)

is a function of λ.

Theorem

∇r(K, λ) is a rational function in t = exp(πiλ) and agrees with the

invariant of Akutsu, Deguchi, and Ohtsuki [ADO92].

In particular, for r = 1 it is the Conway polynomial (normalized

Alexander polynomial).

We interpret Vr as an extension of ADO to a field theory.
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Special cases

Theorem

If ω = 0, then Vr(S
3, L, 0) is the Kashaev invariant, the rth colored

Jones polynomial of L evaluated at q = exp(πi/r).

This is the invariant appearing in the volume conjecture.

We interpret Vr as extending the Kashaev invariant to a field theory,

because it also makes sense for manifolds other than S3.
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Why bother?

Some advantages over usual RT:

• Any TQFT gives mapping class group representations; for RT Dehn

twists are finite-order and obviously not faithful

• Mapping class group representations of BCGP are infinite-order,

so potentially faithful

• BCGP can distinguish some lens spaces that RT cannot
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How to construct it

• As with RT, first step is invariants of framed links in S3.

• Usual RT construction assigns representations of Uq(sl2) to

components

• Now we use Uξ(sl2) at ξ = exp(πi/r)

• Class ω assigns complex number λj to link component Lj

(evaluate on meridian)

• We assign Lj a Uξ(sl2)-module Vλj
parametrized by λj

• Where do these come from?
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Highest-weight modules

Fact

For q generic (not a root of unity)

up to some signs any

Uq(sl2)-module of dimension

λ+ 1 looks like Vλ given by

• qλ

• qλ−3

...
...

• q−λ

F

F

F E

E

E

• Weights are eigenvalues of

K = qH just like for usual sl2

• Here we need highest weight

λ to be an integer
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q a root of unity

Now set q = ξ = exp(πi/r)

• ξλ

• ξλ−2

...
...

• ξ−λ

F

F

F E

E

E

• If highest weight

λ ∈ {0, 1, . . . , r − 1}, get
module Vλ of dimension λ+ 1

specializing previous case

• If λ ∈ Z and |λ| ≥ r, Vλ is no

longer irreducible

• New modules: because ξ2r = 1,

can have modules Vλ of

dimension r for any λ ∈ C \ Z
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Representations of Uξ(sl2)

λ ∈ {0, 1, . . . , r − 2}

• Modules Vλ are

specializations of generic

q case

• Non-vanishing quantum

dimensions

• This part gives the

modular category used in

RT construction

λ ∈ C \ Z or λ = r − 1

• New, exotic behavior:

non-integral

highest-weights

• Vanishing quantum

dimension

• These modules are sent to

0 in semi-simplification as

part of RT construction

• Important case is Vr−1, used to construct Kashaev invariant.

• If λ ∈ Z and λ 6∈ {0, 1, . . . , r − 1}, much more complicated. We

mostly avoid these modules.
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Applying to BCGP construction

• To compute Vr(S
3, L, ω) we assign component Lj with ω-value λj

the module Vλj

• To get surgery invariant, there is a similar sum over all admissible

labelings like in usual RT. (Roughly speaking, we sum over rth

roots of exp(πiλj))

• One significant technical difficultly: because quantum dimension

of Vλ vanishes, obvious construction vanishes. Need to use

modified traces to fix this.

• For this reason BCGP is sometimes called a non-semisimple TQFT
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Towards nonabelian SL2(C)-field
theory

Topological field theories

Geometric field theories

Abelian SL2(C)-field theory

Towards nonabelian SL2(C)-field theory
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Nonabelian holonomy

• The BCGP invariant is defined for ρ : π1(M) → SL2(C) with abelian

image

• Problem: geometrically interesting representations never have

abelian image!

• For example, canonical holonomy rep ρhol of hyperbolic M is

faithful, so never abelian
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Our goal

Extend BCGP theory Vr(M, L, ω) to SL2(C)-field theory. Corresponding

quantum holonomy invariants are

Fr(M, L, ρ, ω) ∈ C

Can think of this as a deformation or twisting of Kashaev/ADO

invariants by ρ.

• In abelian case cohomology class ω determined ρ, plus logarithm

of meridian eigenvalues

• Now ω is a similar choice of logarithm, needs to be compatible

with ρ

Fr has not yet been defined in general. I want to explain what is

known and discuss remaining obstacles.
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Physical interpretation

• Recall that WRT theory Fk was quantum Chern-Simons theory

with gauge group SU(2)

• Fr should be closely related to quantum Chern-Simons with

noncompact gauge group SL2(C) [Guk05]

• Interesting in context of volume conjecture
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The volume conjecture

Recall that Fr(S
3, L, ρtriv, 0) = Vr(S

3, L, 0) is the Kashaev invariant,

equivalently the rth colored Jones polynomial at q = exp(πi/r).

Conjecture ([Kas97], [MM01])

For any hyperbolic knot K in S3,

lim
r→∞

log |Fr(S
3, K, ρtriv, 0)|
r

=
Vol(K, ρhol)

2π

where Vol(K, ρhol) is the hyperbolic volume of the canonical

holonomy representation ρhol.

Question

How does value at trivial representation know about the canonical

hyperbolic structure?
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The volume conjecture and GFT

In the context of SL2(C)-field theory, can at least split this into two

conjectures:

Conjecture

lim
r→∞

log |Fr(S
3, K, ρhol, 0)|
r

=
Vol(K, ρhol)

2π

Conjecture

lim
r→∞

log |Fr(S
3, K, ρtriv, 0)|
r

= lim
r→∞

log |Fr(S
3, K, ρhol, 0)|
r

First seems plausible. Second is harder but Witten [Wit11] suggests

physical reasons it might be true.
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Links in S3

First step: links L in M = S3.

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin

[Bla+20])

Up to phase indeterminacy there is such an invariant

Fr(L, ρ, ω) ∈ C/Γr2

where Γn is the group of nth roots of unity. Here ρ is any boundary

non-parabolic representation.

Problem

Cannot make sense of sum of things in C/Γr2 ; need to fix this to use

RT construction.

Boundary non-parabolic is also a problem (hyperbolic links are always

boundary parabolic) but is easier to fix.
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Defining the invariant

• Before, we used modules Vλ with highest weight λ ∈ C

• These were unusual, but still had Er and Fr acting by 0

• However, there are cyclic modules Vχ,λ where this is no longer

true!

• Now they are parametrized by matrices[
χ(Kr) −χ(Er)

χ(KrFr) · · ·

]
∈ SL2(C)

where χ is a character on a central subalgebra Z0 ⊂ Uξ(sl2) that

appears at q = ξ.

• λ is related to action of Casimir on Vχ,λ
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Cyclic modules

• Cyclic modules are

parametrized by character χ

and “highest weight” λ, which

is not really a highest weight

anymore because ker E = 0.

• Instead λ determines action

of the Casimir element

• χ is related to value of

holonomy ρ around the strand

of a link

• λ is logarithm of eigenvalues

of the holonomy

χ(Kr) = κ, χ(Er) = ε

v0 κ1/r

v1 κ1/rξ−2

...
...

vr−1 κ1/rξ−2(r−1)

E

E

E

E

E · vk = vk−1

E · v0 = εvr−1
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The braiding

• Key step in RT link invariants is defining the braiding

V ⊗W → W ⊗ V

• Usually determined by action of universal R-matrix on V ⊗W:

R = qH⊗H/2
∞∑
n=0

cnE
n ⊗ Fn ∈ Uq(sl2)

⊗2

• For ordinary RT and BCGP, E and F act nilpotently so action of R

converges

• Problem: for cyclic modules action of R diverges
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Fixing the braiding

• To fix this, Kashaev and Reshetikhin [KR04; KR05] suggest looking

at conjugation action of R on Uq(sl2)
⊗2, which still makes sense

at q = ξ

• Can use this to uniquely characterize braiding on modules

• However, does not fix normalization or give explicit formula

• Consequences:

1. Fr has indeterminate phase

2. Very difficult to compute values

3. Hard to relate to geometry
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A special case

In simplest nontrivial case, something can be said:

Theorem (Me, [McP22a; McP22b])

For any link L in S3,

F2(L, ρ, ω)F2(L, ρ, ω) = τ(S3 \ L, ρ)

where L is the mirror image and τ(S3 \ L, ρ) is the Reidemeister

torsion twisted by ρ.

This is the natural generalization of the usual construction of the

Alexander polynomial as a quantum invariant.

Proof.

Instead of computing braiding directly, use quantum doubles to give

a different characterization that it easier to work with.
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Understanding the braiding

We want to understand the braiding better in general.

Theorem (Me, Reshetikhin [MR22; McP21])

By using a certain presentation of Uξ(sl2), we can explicitly compute

braiding matrices in terms of quantum dilogarithms.

• The (cyclic) quantum dilogarithm of Faddeev and Kashaev [FK94]

is a matrix-valued function analogous to the dilogarithm function

appearing in the computation of complex volume

• This computation should similarly be understood in terms of

hyperbolic geometry

• This is a work in progress; a preliminary version is in my thesis

[McP21]
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Ideal triangulations and the braiding

• To describe hyperbolic structures on a link complement, use ideal

triangulation [Thu80]

• To obtain these from link diagrams, use octahedral

decomposition of Thurston [Thu99] and Kim, Kim, and Yoon

[KKY18]

• Each crossing has four tetrahedra

• Our quantum braiding at a crossing factors into four quantum

dilogarithms, one for each tetrahedron

• Suggests a close relationship (perhaps equivalence?) with

invariants of Baseilhac and Benedetti [BB05]
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Fixing the phase ambiguity

• Central characters χ of Uξ(sl2) parametrizing modules are closely

related to shapes of hyperbolic ideal tetrahedron [McP22b]

• Phase ambiguity in Fr(L, ρ, ω) is related to picking rth roots of the

shapes

• Analogous problem in computation of Chern-Simons invariant is

solved by flattenings of Neumann [Neu04]

• I am currently working on using these to resolve the phase

ambiguity
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Classical applications

Going the other direction, we can apply ideas from geometric

quantum field theory to hyperbolic geometry:

Theorem (Me, to appear)

For M a compact, oriented, closed 3-manifold and ρ : π1(M) → SL2(C)
there is a refined complex volume V(M, ρ) ∈ C lifting the usual one:

V(M, ρ) ≡ Vol(M, ρ) + iCS(M, ρ) (mod π2iZ)

Recall that CS(M, ρ) is only defined mod π2Z.

• V is also defined for manifolds with torus boundary given a

choice of boundary conditions.

• It obeys gluing relations, so we can think of this as a geometric

(classical) field theory
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Proof idea

The proof comes from an analogy to the quantum invariant Fr .

• The description of the hyperbolic structure ρ in terms of Uξ(sl2) is

also convenient for computing complex volume.

• Can use to understand π2i ambiguity (analogous to phase

ambiguity in Fr) and eliminate, then

• use techniques of Blanchet, Geer, Patureau-Mirand, and

Reshetikhin [Bla+20] to prove this gives an invariant of (M, ρ).
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Conclusion

• Motivated by volume conjecture and physics we want to upgrade

TQFTs to include geometric data

• We call the values on links and manifold quantum holonomy

invariants

• To define them, need to understand unusual representations of

Uξ(sl2) at root of unity

• These are closely related to hyperbolic geometry and octahedral

decompositions

• In the future, I hope these connections produce a better

understanding of both quantum topology and of hyperbolic

geometry/topology
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