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Introduction



Overview

Part I (previously) General idea of and motivation for a holonomy invarant

of a link L with a representation π1(S3 \ L)→ G .

Part II (now) Construction of a holonomy invariant for G = SL2(C) due to

Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20]

� I will also discuss my recent work [McP20] interpreting their

invariant in terms of the SL2(C)-twisted Reidemeister torsion.

� The plan is:

1. Discuss some properties of the BGPR construction and how it relates

to other link invariants

2. Give an overview of the technical aspects of the construction
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What is the BGPR invariant?



What is the BGPR invariant?

BGPR invariant

� L a link in S3 and ρ a representation π1(S3 \ L)→ SL2(C).

� Pick an integer r ≥ 2.

� Pick some rth roots: Let xi be a meridian of the ith component of L

such that ρ(xi ) has eigenvalues λ±i . Choose r th roots µr
i = λi .

The rth BGPR invariant is a complex number

Fr (L, ρ, {µi})

defined up to an overall r2th root of 1. Furthermore, Fr is invariant

under global conjugation of ρ (i.e. it is gauge invariant.)

Caveat

F is currently only defined for λi 6= ±1. A fix is in preparation.

3



Abelian case

Here’s a simple case:

� For any link L, pick t 6= 0. Then there is a representation sending

every meridian x to

ρ(x) =

(
t

t−1

)
� Any ρ with abelian image (which avoids ±1 as eigenvalues) is

conjugate to one of this type, but maybe different ti for each

component.

� In this special case, Fr (L, ρ, {t1/ri }) is equal to the rth

Akutsu-Deguchi-Ohtsuki (ADO) invariant.

� For r = 2, F2(L, ρ, {
√

ti}) is the Conway potential (Alexander

polynomial, Reidemeister torsion)
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Nonabelian case

� Now let ρ be a representation with nonabelian image.

� Fr (L, ρ, {µi}) is a deformation of the ADO invariant discussed

previously.

� Idea is that the ti are now the eigenvalues λi .

� The novely in the BGPR construction is that we can use nonabelian

ρ.

� In the special case r = 2 we can say explicitly what we mean by “a

deformation.”
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Torsions of link exteriors

Here’s a related abelian/nonabelian link invariant.

� The Reidemeister torsion of S3 \ L is constructed using the ρ-twisted

homology H∗(S3 \ L; ρ).

� For ρ sufficiently nontrivial, H∗(S3 \ L, ρ) is acyclic and we can

extract a number τ(L, ρ), the torsion.

� For abelian representations ρ(x) = t we get a Laurent polynomial,

the Alexander polynomial.

� For abelian representations ρ(x) =

(
t

t−1

)
we get the square of

the Alexander polynomial.

� For nonabelian representations we get the twisted or nonabelian

Reidemeister torsion.
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BGPR invariant versus torsion

Theorem [McP20]

Let L be a link in S3 and ρ : π1(S3 \ L) a representation such that ρ(x)

never has 1 as an eigenvalue for any meridian x of L. Then

F2(L, ρ, {µi})F2(L, ρ, {µi}) = τ(L, ρ)

for any choice of roots µi .

Here L is the mirror image of L.
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r = 2 BGPR is a nonabelian Conway potential

One way to understand this theorem:

� If you compute the torsion using the abelian represenation

x 7→

(
t

t−1

)

it factors into two pieces because the matrix has two blocks. Each

piece is equal to the Conway potential of the link.

� For a nonabelian representation, it is not obvious how to factor the

torsion into two pieces. But this is exactly what the BGPR invariant

does.

� Therefore we could call F2(L, ρ) a nonabelian or twisted Conway

potential.
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Significance

� Torsions are a useful invariant, so this indicates that holonomy

invariants should be useful too.

� For example, twisted Alexander polynomials (which are closely

related) are quite useful in knot theory.

� It is possible to compute the hyperbolic volume of a knot

complement from an asympotic limit of hyperbolically-twisted

torsions.

� I am hopeful that a relationship between Fr and the torsions for

r > 2 can be developed to take advantage of this.
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How to construct the BGPR

invariant



Quantum sl2

Definition

Uq = Uq(sl2) is the algebra over C(q) generated by K±1,E ,F with

relations

KE = q2EK , KF = q−2FK , EF − FE =
K − K−1

q − q−1

� This is a q-analogue of the universal enveloping algebra of sl2, with

K = qH .

� The center of Uq is generated by the quantum Casimir element

Ω := (q − q−1)2FE + qK − q−1K−1
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Quantum sl2 at a root of unity

Set q = ξ = exp(πi/r) a 2rth root of 1.

Facts

1. Uξ is rank r2 over the central subalgebra

Z0 := C[K r ,K−r ,E r ,F r ]

2. Z0 is a commutative Hopf algebra, so it’s the algebra of functions

on a group. Specifically,

SpecZ0
∼= SL2(C)∗

3. The center of Uξ is generated by Z0 and the Casimir Ω (subject to a

polynomial relation.)

We will get to the difference between SL2(C)∗ and SL2(C) in a bit.
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Grading on representations

� Closed points χ ∈ SpecZ0 are homomorphisms χ : Z0 → C.

� We associate (
κ −ε
φ (1− εφ)κ−1

)
∈ SL2(C)

↔

χ(K r ) = κ, χ(E r ) =
ε

(q − q−1)r
, χ(F r ) =

φ/κ

(q − q−1)r

� A representation V with SL2(C)-grading χ is one where every

Z ∈ Z0 acts by χ(Z ). We say V has character χ.
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Grading on representations

Theorem

If the the matrix associated to χ does not have ±1 as an eigenvalue,

then:

� Every representation with character χ is projective, irreducible, and

r -dimensional.

� There are r isomorphism classes of these, parametrized by the action

of Ω.

The idea is that we associate a strand with holonomy corresponding to χ

to a representation with character χ. We needed the extra data of the

choice {µi} of roots to know which of the r irreps to pick.
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Braiding on representations

� There is an automorphism

Ř : Uξ ⊗ Uξ → Uξ ⊗ Uξ

satisfying the braid relations.

� If Uξ were quasitriangular Ř would be conjugation by the universal

R-matrix followed by swapping the tensor factors, but for technical

reasons only the outer autormorphism Ř exists.

� Ř acts nontrivially on Z0 ⊗Z0, so it induces a map of modules

Vχ1
Vχ2

Vχ3
Vχ4

corresponding to the colored braid groupoid action on colors. Notice

that the isomorphism classes of each strand change.
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Problems with the braiding

1. The above action on modules is only defined up to a scalar; we can

mostly fix this, but we get the root-of-unity indeterminacy in Fr .

2. The map (χ1, χ2)→ (χ4, χ3) is not the conjugation action on

SL2(C), but something more complicated.

Fixing 2 is harder. It is related to the fact that SpecZ0 is really the

Poisson dual group

SL2(C)∗ :=

{((
κ 0

φ 1

)
,

(
1 ε

0 κ

))}
⊆ GL2(C)× GL2(C)

SL2(C)∗ is birationally equivalent as a variety, but not isomorphic as

group, to SL2(C). The equivalence is

(x+, x−)↔ x+(x−)−1

15



Factorized biquandle

� The braid group action

(g1, g2)→ (g−1
1 g2g1, g1)

on colors is an example of a quandle, the conjugation quandle of

SL2(C).

� A quandle is an algebraic structure that describes colors on arcs of

knot diagrams. There are more general ones than conjugation.

� The more complicated action on SL2(C)∗ colors is a generalization

called a biquandle.

� It can be shown that the biquandle is a factorization of the

conjugation quandle of SL2(C).
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Braid groupoid representations from Uξ

� Instead of a representation of the colored braid groupoid B(SL2(C)),

we get a representation of a different, closely related groupoid

B(SL2(C))∗.

� Via the theory of qunandle factorizations developed in [Bla+20], we

can use closures of braids in B(SL2(C))∗ to represent SL2(C)-links.

� Short version: The grading on Uξ-modules is not quite right, so we

have to use a nonstandard coordinate system for representations of

link complements.
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Modified traces

� To get representations of links (closed braids) we need a way to take

traces/closures.

� Problem: The algebra Uξ is not semisimple and the quantum

dimensions of the irreps we want to use are all zero. In particular, all

our link invariants will be 0.

� One way to fix this: Take the partial quantum trace of

F(β) : Vg1 ⊗ · · ·Vgn → Vg1 ⊗ · · · ⊗ Vgn

to get a map ptr(F(β)) : Vg1 → Vg1 . (That is, write your link as a

1-1 tangle.)
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Modified traces

� The partial trace ptr(F(β)) : V1 → V1 is an endomorphism of an

irreducible module, so by Schur’s Lemma there’s a scalar with

ptr(F(β)) = 〈ptr(F(β))〉 idVg1

� The trace of ptr(F(β)) should be 〈ptr(F(β))〉 times the (quantum)

dimension of Vg1 .

� If we choose modified dimensions d(Vg1) correctly, then

〈ptr(F(β))〉 d(Vg1)

will be an invariant of the closure L of β.

� There is a theory of modified traces due to Geer, Patureau-Mirand,

et al. that says how to do this.
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Summary

Our algebraic constructions have given us a functor

F : B(SL2(C))∗ → Rep(Uξ)

where B(SL2(C))∗ is a modified version of the groupoid B(SL2(C))

discussed in Part I. To compute the link invariant:

� Write your SL2(C)-link L as the closure of a braid β in B(SL2(C))∗.

(Actually we need to also take some rth roots as well.)

� The modified trace of F(β) is an invariant of L.
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Relation to torsions

� Recall that for r = 2

F2(L, ρ, {µi})F2(L, ρ, {µi}) = τ(L, ρ)

That is, the norm-square of F2 is the torsion.

� To prove this, we work with the squared representation F ⊗ F ,

where F is a mirrored version of F .

� F has inverted gradings, opposite multiplication, and inverted

braiding.

� F ⊗ F is a graded version of the quantum double that appears in

the correspondence between Reshtikhin-Turaev/Turaev-Viro

(surgery/state sum) invaraints.

� The definition of F ⊗ F is more complicated than F , but this

representation is in some ways easier to work with.
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Twisted burau representations

� The usual torsion can be defined using the Burau representation of

the braid groupoid B

� The twisted torsion is defined using a twisted Burau representation

of B(SL2(C)).

� In [McP20] I show that the (super)centralizer of the image of F ⊗F
is naturally isomorphic to the twisted Burau representation.

� Compare Schur-Weyl duality, which computes the tensor

decomposition of GLn representations by showing the centralizers are

related to Sn reperesentations.

� Using this result it’s not hard to show the desired relationship with

the torsion.
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Questions? Post them at ncngt.org.

Alternately, I’d love to talk more about this or related mathematics: send

me an email and we can get in touch!

These slides are available at esselltwo.com.

http://ncngt.org
http://esselltwo.com
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