Holonomy invariants of links

Calvin McPhail-Snyder
June 1, 2020
UC Berkeley

Acknowledgements

- I would like to thank Martin Bobb and Allison N. Miller for organizing the Nearly Carbon Neutral Geometric Topology Conference,
- and also to thank Carmen Caprau and Christine Ruey Shan Lee for organizing the session on quantum invariants and inviting me to speak.
- Much of the mathematics I will present is due to Kashaev-Reshetikhin and Blanchet, Geer, Patureau-Mirand, and Reshetikhin, although I will also discuss some of my own work (mostly in the second part.)

Motivation

Quantum holonomy invariants

A quantum holonomy invariant is an invariant of topological objects. The adjectives mean:
quantum: it forms part of a topological quantum field theory and/or is constructed using algebraic objects called quantum groups holonomy: instead of just X a topological space it depends on (X, ρ), where $\rho: \pi_{1}(X) \rightarrow G$ is a map into some group G.

Typically we expect it to only depend on the conjugacy class of ρ (gauge invariance.)

Terminology

- For geometric applications, G is a Lie group with Lie algebra \mathfrak{g}. Then $\rho: \pi_{1}(X) \rightarrow G$ can be described by a flat \mathfrak{g}-valued connection whose holonomy is the map ρ.
- Turaev et al. [Tur10] have a notion of homotopy quantum field theory for pairs (X, ϕ), where $\phi: X \rightarrow Y$ for some fixed Y is considered up to homotopy. For $Y=B G$ a classifying space we recover the map $\rho: \pi_{1}(X) \rightarrow G$.

Motivation I: Better invariants

Why would you want to do this?

- Lots of geometry is captured by a representation into a Lie group.
- For example, if X is a hyperbolic 3-manifold, we have an essentially unique representation $\rho: \pi_{1}(X) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$.
- By using this extra data, we can get more powerful invariants.
- Compare ordinary Alexander polynomial versus twisted Alexander polynomial: the latter is more powerful. (We will return to this example in part II.)

Motivation II: Volume Conjectures

Why would you want to do this?

Volume Conjecture (Kashaev, Murakami, Murakami, et al.)

- K: hyperbolic knot in S^{3} (i.e. a knot whose complement is a hyperbolic 3 -manifold of finite volume.)
- $J_{n}(K)$: nth colored Jones polynomial evaluated at $q=\exp (2 \pi i / n)$, normalized so $J_{n}($ unknot $)=1$.

Then

$$
\lim _{n \rightarrow \infty} \frac{\left|\log J_{n}(K)\right|}{n}=\frac{\operatorname{Vol}\left(S^{3} \backslash K\right)}{2 \pi}
$$

A good overview is [Mur10]. There are many related conjectures and generalizations.

Motivation II: Volume Conjectures

- These conjectures give a relationship between asymptotics of quantum invariants and hyperbolic geometry.
- It is possible to construct holonomy invariants which are deformations of the colored Jones polynomial by the hyperbolic structure.
- The hope is that this relationship can be used to attack the volume conjectures.

Reshetikhin-Turaev invariants

Reminder on the Reshetikhin-Turaev construction

- Before discussing the holonomy version I'll quickly refresh you on the usual RT construction.
- Pick a representation V of a quasitriangular Hopf algebra H (usually H is a quantum group)
- Because it's a Hopf algebra, $V \otimes V$ is also a representation of H
- The quasitriangular structure on H gives a map $c: V \otimes V \rightarrow V \otimes V$ called the braiding
- c is invertible and satisfies braid relations: If $c_{1}=c \otimes \mathrm{id}_{V}$ and $c_{2}=\operatorname{id}_{v} \otimes c$, then

$$
c_{1} c_{2} c_{1}=c_{2} c_{1} c_{2}
$$

Reminder on the Reshetikhin-Turaev construction

- Assign strands in the braid diagram to V and id_{V} and crossings to the braiding:

- Get braid group representations $\mathcal{F}_{V}: \mathbb{B}_{n} \rightarrow \mathrm{GL}\left(V^{\otimes n}\right)$

Reminder on the Reshetikhin-Turaev construction

- Taking closure of a braid corresponds to a quantum trace tr_{q} generalizing usual trace of linear operators.
- The quantum trace has cyclicity properties like the trace, so it is compatible with Markov moves. Thus:

Theorem

For $L=\langle\beta\rangle$ a braid closure,

$$
\mathcal{F}_{V}(L)=\operatorname{tr}_{q}\left(\mathcal{F}_{V}(\beta)\right)
$$

is an invariant of L.

Reminder on the Reshetikhin-Turaev construction

Ignoring some issues with framings and orientations:

Jones polynomials

If $H=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and V is the 2-dimensional irrep, $\mathcal{F}_{V}(L)$ is the Jones polynomial.

Colored Jones polynomials

If $H=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and V is the n-dimensional irrep, $\mathcal{F}_{V}(L)$ is the nth colored Jones polynomial.

HOMFLY-PT polynomials

If $H=\mathcal{U}_{q}\left(\mathfrak{s l}_{n}\right)$ and V is the n-dimensional irrep, $\mathcal{F}_{V}(L)$ is the HOMFLY-PT polynomial.

Here $\mathcal{U}_{q}(\mathfrak{g})$ is a q-analogue of the universal enveloping algebra of \mathfrak{g}, a.k.a. a quantum group.

Resehtikhin-Turaev holonomy

 invariants
How to construct holonomy invariants

- I will now sketch how to construct holonomy invariants.
- This is a Reshetikhin-Turaev or surgery construction. There are also Turaev-Viro or state-sum approaches.
- I will just describe the process for links in S^{3}, but there are examples of full 3-2-1 holonomy TQFTs.
- More specifically, I will describe what sort of algebraic machinery you need to get these invariants.
- My second talk will show one way to construct this machinery, due to Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20]

Representations of knot groups

How can we describe the link and its group representation?

- Let $L=\langle\beta\rangle$ be the closure of a braid β on n strands
- The Wirtinger presentation of $\pi_{1}\left(S^{3} \backslash L\right)$ has n generators x_{1}, \ldots, x_{n} which are meridians for each strand
- Can describe $\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$ by picking $\rho\left(x_{i}\right)$ for each i
- That is, $\rho\left(x_{i}\right)$ is the holonomy around strand i
- How do we know ρ satisfies the relations?

Braid action on free group

The braid group \mathbb{B}_{n} acts on the free group $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ by

$$
\sigma_{i} \cdot x_{j}= \begin{cases}x_{i}^{-1} x_{i+1} x_{i} & j=i \\ x_{i} & j=i+1 \\ x_{j} & \text { otherwise }\end{cases}
$$

If L is the closure of $\beta, \pi_{1}\left(S^{3} \backslash L\right)$ has presentation

$$
\left\langle x_{1}, \ldots, x_{n} \mid x_{1}=\beta \cdot x_{1}, \ldots, x_{n}=\beta \cdot x_{n}\right\rangle
$$

so it is sufficient that ρ satisfies these relations.

Colored braids

Let G be a group. A G-colored braid is a braid β on n strands and a tuple (g_{1}, \cdots, g_{n}) of elements of G. The braids act on the colors by the rule

(compare the relations for the Wirtinger presentation.) We write this as

$$
\sigma_{1}:\left(g_{1}, g_{2}\right) \rightarrow\left(g_{1}^{-1} g_{2} g_{1}, g_{1}\right)
$$

and more generally $\beta:\left(g_{1}, \ldots, g_{n}\right) \rightarrow\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$.
It makes sense to take the closure of β when it's an endomorphism.

The colored braid groupoid

- G-colored braids form a groupoid $\mathbb{B}(G)$ with:
objects tuples $\left(g_{1}, \ldots, g_{n}\right)$
morphisms braids, with the conjugation action on colors:

$$
\sigma_{1}:\left(g_{1}, g_{2}\right) \rightarrow\left(g_{1}^{-1} g_{2} g_{1}, g_{1}\right)
$$

- A groupoid is like a group, but composing two morphisms is not always defined
- The union $\mathbb{B}=\mathbb{B}_{1} \cup \mathbb{B}_{2} \ldots$ of the usual braid groups is a groupoid (one object for each number of strands.)

Ordinary braids versus colored braids

Ordinary braid group(oid) \mathbb{B} $1,2, \ldots$ braids
links in S^{3}

G-colored braid groupoid $\mathbb{B}(G)$ tuples $\left(g_{1}, \ldots, g_{n}\right)$
braids (acting nontrivially on objects)
links in S^{3} with maps $\pi_{1} \rightarrow G$

- Conclusion: To get holonomy invariants, we want a G-graded version of the RT construction.
- This means a functor $\mathbb{B}(G) \rightarrow \operatorname{Rep}(H)$ for some Hopf algebra H with extra structure.

G-graded Reshetikhin-Turaev

- Instead of assigning each strand an H-module V, we need a family of modules V_{g} for $g \in G$
- The braiding is no longer a map $V \otimes V \rightarrow V \otimes V$, but a map

$$
V_{g_{1}} \otimes V_{g_{2}} \rightarrow V_{g_{1}^{-1} g_{2} g_{1}} \otimes V_{g_{1}}
$$

- Instead of a braided monoidal category, we want a G-graded braided monoidal category.

How to get a G-graded category

Here's one way:

- Pick a Hopf algebra H with a big central subalgebra Z_{0}.
- Z_{0} is a commutative Hopf algebra, i.e. the algebra of functions on a group $G=\operatorname{Spec} Z_{0}$.
- (Closed) points of G are characters $\chi: Z_{0} \rightarrow \mathbb{C}$.
- A module V_{χ} with grading $\chi \in G$ is one where $z \in Z_{0}$ acts by $\chi(z)$.
- For example, if H is finite-rank over Z_{0}, we can set $V_{\chi}=H /(\operatorname{ker} \chi)$.
- The example I have in mind is a quantum group $\mathcal{U}_{\xi}(\mathfrak{g})$ when $q=\xi=\exp (2 \pi i / \ell)$ is a root of unity.

More details in part II.

Questions? Post them at ncngt.org.

Alternately, I'd love to talk more about this or related mathematics: send me an email and we can get in touch!

These slides are available at esselltwo.com.

References

References

Christian Blanchet et al. "Holonomy braidings, biquandles and quantum invariants of links with $\mathrm{SL}_{2}(\mathbb{C})$ flat connections". In: Selecta Mathematica 26.2 (Mar. 2020). DoI:
10.1007/s00029-020-0545-0. arXiv: 1806.02787v1 [math.GT].

Hitoshi Murakami. An Introduction to the Volume Conjecture. Jan. 31, 2010. arXiv: 1002.0126v1 [math.GT].

Vladimir Turaev. Homotopy Quantum Field Theory (EMS Tracts in Mathematics). European Mathematical Society, 2010. ISBN: 978-3-03719-086-9.

