Holonomy invariants of links

Calvin McPhail-Snyder

June 1, 2020

UC Berkeley

- I would like to thank Martin Bobb and Allison N. Miller for organizing the Nearly Carbon Neutral Geometric Topology Conference,
- and also to thank Carmen Caprau and Christine Ruey Shan Lee for organizing the session on quantum invariants and inviting me to speak.
- Much of the mathematics I will present is due to Kashaev-Reshetikhin and Blanchet, Geer, Patureau-Mirand, and Reshetikhin, although I will also discuss some of my own work (mostly in the second part.)

Motivation

- A *quantum holonomy invariant* is an invariant of topological objects. The adjectives mean:
- quantum: it forms part of a topological quantum field theory and/or is constructed using algebraic objects called *quantum groups*holonomy: instead of just X a topological space it depends on (X, ρ), where ρ: π₁(X) → G is a map into some group G.

Typically we expect it to only depend on the conjugacy class of ρ (gauge invariance.)

- For geometric applications, G is a Lie group with Lie algebra g. Then ρ : π₁(X) → G can be described by a flat g-valued connection whose holonomy is the map ρ.
- Turaev et al. [Tur10] have a notion of homotopy quantum field theory for pairs (X, φ), where φ : X → Y for some fixed Y is considered up to homotopy. For Y = BG a classifying space we recover the map ρ : π₁(X) → G.

Why would you want to do this?

- Lots of geometry is captured by a representation into a Lie group.
- For example, if X is a hyperbolic 3-manifold, we have an essentially unique representation ρ : π₁(X) → SL₂(ℂ).
- By using this extra data, we can get more powerful invariants.
- Compare ordinary Alexander polynomial versus twisted Alexander polynomial: the latter is more powerful. (We will return to this example in part II.)

Why would you want to do this?

Volume Conjecture (Kashaev, Murakami, Murakami, et al.)

- *K*: hyperbolic knot in *S*³ (i.e. a knot whose complement is a hyperbolic 3-manifold of finite volume.)
- J_n(K): nth colored Jones polynomial evaluated at q = exp(2πi/n), normalized so J_n(unknot) = 1.

Then

$$\lim_{n\to\infty}\frac{|\log J_n(K)|}{n}=\frac{\operatorname{Vol}(S^3\setminus K)}{2\pi}$$

A good overview is [Mur10]. There are many related conjectures and generalizations.

- These conjectures give a relationship between asymptotics of quantum invariants and hyperbolic geometry.
- It is possible to construct holonomy invariants which are deformations of the colored Jones polynomial by the hyperbolic structure.
- The hope is that this relationship can be used to attack the volume conjectures.

Reshetikhin-Turaev invariants

- Before discussing the holonomy version I'll quickly refresh you on the usual RT construction.
- Pick a representation V of a quasitriangular Hopf algebra H (usually H is a quantum group)
- Because it's a Hopf algebra, $V \otimes V$ is also a representation of H
- The quasitriangular structure on H gives a map $c:V\otimes V\to V\otimes V$ called the braiding
- *c* is invertible and satisfies braid relations: If $c_1 = c \otimes id_V$ and $c_2 = id_V \otimes c$, then

$$c_1c_2c_1=c_2c_1c_2$$

• Assign strands in the braid diagram to V and id_V and crossings to the braiding:

• Get braid group representations $\mathcal{F}_V: \mathbb{B}_n \to \mathsf{GL}(V^{\otimes n})$

- Taking closure of a braid corresponds to a *quantum trace* tr_q generalizing usual trace of linear operators.
- The quantum trace has cyclicity properties like the trace, so it is compatible with Markov moves. Thus:

Theorem

For $L = \langle \beta \rangle$ a braid closure,

$$\mathcal{F}_V(L) = \operatorname{tr}_q\left(\mathcal{F}_V(\beta)\right)$$

is an invariant of L.

Reminder on the Reshetikhin-Turaev construction

Ignoring some issues with framings and orientations:

Jones polynomials

If $H = U_q(\mathfrak{sl}_2)$ and V is the 2-dimensional irrep, $\mathcal{F}_V(L)$ is the Jones polynomial.

Colored Jones polynomials

If $H = U_q(\mathfrak{sl}_2)$ and V is the *n*-dimensional irrep, $\mathcal{F}_V(L)$ is the *n*th colored Jones polynomial.

HOMFLY-PT polynomials

If $H = U_q(\mathfrak{sl}_n)$ and V is the *n*-dimensional irrep, $\mathcal{F}_V(L)$ is the HOMFLY-PT polynomial.

Here $\mathcal{U}_q(\mathfrak{g})$ is a q-analogue of the universal enveloping algebra of \mathfrak{g} , a.k.a. a quantum group.

Resentikhin-Turaev holonomy invariants

- I will now sketch how to construct holonomy invariants.
- This is a *Reshetikhin-Turaev* or *surgery* construction. There are also *Turaev-Viro* or *state-sum* approaches.
- I will just describe the process for links in S³, but there are examples of full 3-2-1 holonomy TQFTs.
- More specifically, I will describe what sort of algebraic machinery you need to get these invariants.
- My second talk will show one way to construct this machinery, due to Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20]

How can we describe the link and its group representation?

- Let $L = \langle \beta \rangle$ be the closure of a braid β on *n* strands
- The Wirtinger presentation of π₁(S³ \ L) has n generators x₁,..., x_n which are meridians for each strand
- Can describe $\rho : \pi_1(S^3 \setminus L) \to G$ by picking $\rho(x_i)$ for each i
- That is, $\rho(x_i)$ is the holonomy around strand *i*
- How do we know ρ satisfies the relations?

The braid group \mathbb{B}_n acts on the free group $\langle x_1, \ldots, x_n \rangle$ by

If L is the closure of β , $\pi_1(S^3 \setminus L)$ has presentation

$$\langle x_1,\ldots,x_n|x_1=\beta\cdot x_1,\ldots,x_n=\beta\cdot x_n\rangle$$

so it is sufficient that ρ satisfies these relations.

Colored braids

Let G be a group. A G-colored braid is a braid β on n strands and a tuple (g_1, \dots, g_n) of elements of G. The braids act on the colors by the rule

(compare the relations for the Wirtinger presentation.) We write this as

$$\sigma_1: (g_1, g_2) \to (g_1^{-1}g_2g_1, g_1)$$

and more generally $\beta : (g_1, \ldots, g_n) \to (g'_1, \ldots, g'_n)$. It makes sense to take the closure of β when it's an endomorphism. • G-colored braids form a groupoid $\mathbb{B}(G)$ with:

objects tuples (g_1, \ldots, g_n) morphisms braids, with the conjugation action on colors:

$$\sigma_1:(g_1,g_2)\rightarrow(g_1^{-1}g_2g_1,g_1)$$

- A groupoid is like a group, but composing two morphisms is not always defined
- The union B = B₁ ∪ B₂... of the usual braid groups is a groupoid (one object for each number of strands.)

	Ordinary braid $group(oid)$ ${\mathbb B}$	G -colored braid groupoid $\mathbb{B}(G)$
Objects	$1, 2, \dots$	tuples (g_1,\ldots,g_n)
Morphisms	braids	braids (acting nontrivially on objects)
Closures	links in S ³	links in S^3 with maps $\pi_1 o G$

- **Conclusion:** To get holonomy invariants, we want a *G*-graded version of the RT construction.
- This means a functor B(G) → Rep(H) for some Hopf algebra H with extra structure.

- Instead of assigning each strand an *H*-module *V*, we need a *family* of modules V_g for $g \in G$
- The braiding is no longer a map $V \otimes V o V \otimes V$, but a map

$$V_{g_1}\otimes V_{g_2}
ightarrow V_{g_1^{-1}g_2g_1}\otimes V_{g_1}$$

• Instead of a braided monoidal category, we want a *G*-graded braided monoidal category.

Here's one way:

- Pick a Hopf algebra H with a big central subalgebra Z_0 .
- Z₀ is a commutative Hopf algebra, i.e. the algebra of functions on a group G = Spec Z₀.
- (Closed) points of G are characters $\chi: Z_0 \to \mathbb{C}$.
- A module V_{χ} with grading $\chi \in G$ is one where $z \in Z_0$ acts by $\chi(z)$.
- For example, if H is finite-rank over Z_0 , we can set $V_{\chi} = H/(\ker \chi)$.
- The example I have in mind is a quantum group $\mathcal{U}_{\xi}(\mathfrak{g})$ when $q = \xi = \exp(2\pi i/\ell)$ is a root of unity.

More details in part II.

Questions? Post them at ncngt.org.

Alternately, I'd love to talk more about this or related mathematics: send me an email and we can get in touch!

These slides are available at esselltwo.com.

References

Christian Blanchet et al. "Holonomy braidings, biquandles and quantum invariants of links with $SL_2(\mathbb{C})$ flat connections". In: Selecta Mathematica 26.2 (Mar. 2020). DOI: 10.1007/s00029-020-0545-0. arXiv: 1806.02787v1 [math.GT].

Hitoshi Murakami. An Introduction to the Volume Conjecture. Jan. 31, 2010. arXiv: 1002.0126v1 [math.GT].

Vladimir Turaev. *Homotopy Quantum Field Theory (EMS Tracts in Mathematics)*. European Mathematical Society, 2010. ISBN: 978-3-03719-086-9.