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Motivation

• Quantum invariants like the Jones polynomial are defined in an
algebraic way.

• However, there is now a lot of interest in what they say about the
geometry of knots and manifolds.

• I want to talk about a research program to address these questions
by constructing more geometric quantum invariants.
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Plan of the talk

• Discuss quantum invariants with examples, so I can explain what I
mean by “algebraic”.

• State a conjectured relationship to geometry.
• Give some idea of how to twist the quantum invariants by geometric

data.
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Quantum invariants



What is a quantum invariant?

• A knot invariant is a function

{knots} → numbers, polynomials, etc.

• For our purposes, a quantum invariant is a topological invariant
constructed using the representation theory of quantum groups.

• Generally quantum invariants appear as part of topological quantum
field theories (TQFTs).
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Example: the Jones polynomial

Quantum sl2

Uq = Uq(sl2) is an algebra over C(q, q−1) that we can think of as a
q-analogue of the universal enveloping algebra of sl2.
For q not a root of unity, it acts a lot like sl2.
In particular, there is one1 representation of dimension N = 1, 2, . . .
which we call VN.

1Well, two, but they are almost identical

5



Highest-weight representations

• sl2 has generators E,F,H,
relations

[E,F] = H
[H,E] = 2E
[H,F] = −2F

• Weight modules decompose
into H-eigenspaces

• A highest-weight module is
generated by v with Ev = 0,
Hv = λv (it has highest weight
λ)

Fact
Any finite-dimensional weight
module of dimension N looks like

• λ = N − 1

• N − 3

...
...

• −(N − 1)

F

F

F E

E

E
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Quantum highest-weight representations

• For Uq(sl2), replace H with
K = qH

[E,F] = K − K−1

q − q−1

KE = q2EK
KF = q−2FK

• Weight modules are still
described by highest weights

• Important difference: Uq is
non-cocommutative: V ⊗ W
and W ⊗ V are different
representations.

Fact
Any finite-dimensional weight
module of dimension N looks like

• qλ = qN−1

• qN−3

...
...

• q−(N−1)

F

F

F E

E

E
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Braid group representations

Consider a braid β:
VN

VN

VN

VN

VN

VN

Want a U -module map VN(β) : V⊗3
N → V⊗3

N .
Key ingredient: value VN(σ) : VN ⊗ VN → VN ⊗ VN on a braid generator.
Example
The braid above will be mapped to

VN(β) = (VN(σ)
−1 ⊗ idVN)(idVN ⊗VN(σ))
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Getting the braiding

For any Uq-modules V,W, define σV,W : V ⊗ W → W ⊗ V by

σV,W(x) = τ(R · x)

where R ∈ Uq ⊗ Uq is the universal R-matrix2 and τ(v ⊗ w) = w ⊗ v.

Theorem
σ satisfies braid relation

(σ ⊗ id)(id⊗σ)(σ ⊗ id) = (id⊗σ)(σ ⊗ id)(id⊗σ).

In terms of R, this is the “Yang-Baxter relation”

Corollary
Any Uq-module V determines a braid group representation.

2Actually it’s in a sort of completion of Uq ⊗ Uq. This will come up later.
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Example: the Jones polynomial

• We want to compute the Jones polynomial of L. Let β be a braid on
on b strands whose closure is L.

• V2(β) is a map V⊗b
2 → V⊗b

2 .
• Determined by value V2(σ) : V2 ⊗V2 → V2 ⊗V2 on braid generators.
• V2(σ) is a 4 × 4 matrix with entries in C[q, q−1].
• Explicitly given by action of

R = qH⊗H
∞∑

n=0
cnEn ⊗ Fn

on V2 ⊗ V2.
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Taking closures

We think of the closure

β

as a trace, and if the closure of β is L, then (up to some framing issues)

trq V2(β) = V2(β)

is the Jones polynomial of L.
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Cups and caps

coevV : k → V∗ ⊗ V

coevV(1) =
∑

i
vi ⊗ vi

evV : V ⊗ V∗ → k

evV(v ⊗ f) = f(v)

Notice these don’t match. Other orientations are a bit more complicated,
leads to a twist in definition of quantum trace trq.
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Graphical calculus

Can write action of R in terms of other maps:

= q + q−1

which can be used to define the Jones polynomial without using quantum
groups at all.
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An example

Figure eight knot 41

V2(41) = q−4 − q−2 + 1 − q2 + q4
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Computing the Jones polynomial

To compute the Jones polynomial V2(L) of a link L :

• Represent L as the closure of a braid β on b strands
• Compute the 2b × 2b matrix V2(β)

• Its (quantum) trace is a Laurent polynomial V2(L) in q2

• This is an invariant3 of L called the Jones polynomial

This is an example of the Reshetikhin-Turaev construction applied to the
representation V2.

3Modulo some technicalities about framings that are not important here.
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The colored Jones polynomial

• We can repeat the Resethikin-Turaev construction defining V2(L)
with any representation of Uq (or any quantum group).

Definition
The quantum invariant assigned to a link L by the N-dimensional
Uq-module VN is the Nth colored Jones polynomial VN(L).

• We can do this diagrammatically in terms of cables of links, or by
using Jones-Wenzl projectors
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Algebra → topology

This process was very algebraic. I used words like:

• quantum group (a q-analog of a Lie algebra/group)
• trace
• representation (of a group/algebra)

I did not use more topological/geometric ideas like

• homology/fundamental groups
• essential surfaces
• geometrization
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However, all this algebra still knows about
geometry!
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Value at roots of unity

We are most interested in particular values for knots K.
Set ξ = exp(πi/N) and normalize so that VN(unknot) = 1.

Definition
The complex number

JN(K) = VN(K)|q=ξ

is called the Nth quantum dilogarithm of K.

Why the name? We will explain later.
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Value at roots of unity

Figure-eight knot
Set {k} = ξk − ξ−k. Then

JN(41) =
N−1∑
j=0

j∏
k=1

{N − k}{N + k}.

• Computing these closed formulas for all N is hard!
• One reason: if K is presented as the closure of a braid on b strands,

then computing JN(K) involves the trace of a Nb × Nb matrix.
• This one comes from writing 41 as surgery on the Borromean rings.
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So far, only algebra

• The quantum dilogarithm (and things like it) are algebraic: coming
from representation theory.

• What does it mean that JN(41) =
∑N−1

j=0
∏j

k=1{N − k}{N + k}?
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Geometric connections

Theorem

2π lim
N→∞

log |JN(41)|
N = 2.02988 . . . = Vol(41)

where Vol(K) is the volume of the complete hyperbolic structure of
S3 \ K.

Conjecture (Volume conjecture [Kas97; MM01])
For any hyperbolic knot K,

2π lim
N→∞

log |JN(K)|
N = Vol(K).

• There are versions for complex volume, for knots in 3-manifolds, for
3-manifolds…

• In every case where the left-hand limit is known to exist the
conjecture holds.
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Hyperbolic geometry and knot complements

Definition
A knot K in S3 is hyperbolic if it admits a complete finite-volume
constant-negative curvature metric on its complement. Can be
described as a faithful discrete representation

ρ : π1(S3 \ K) → PSL2(C) = Isom(H3).

Up to conjugacy ρ is a homotopy invariant of S3 \ K!

Theorem
Every knot in S3 is:

• a torus knot,
• a satellite knot (composed of other knots),
• hyperbolic.

Hence most “irreducible” knots are hyperbolic.
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How does JN know about hyperbolic
geometry?
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How does JN know about hyperbolic geometry?

• It’s a conjecture, so no one really knows.
• I can now get to the main point of my talk: a program aimed at

answering this sort of question.
• Along the way I hope we can define some new, even better knot

invariants.
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Holonomy invariants



The idea

• To describe geometry of a topological space X, pick a (conjugacy
class of) representations π1(X) → G for G a Lie group

• For example, a hyperbolic structure on a 3-manifold X is given by a

ρ : π1(X) → Isom(H3) = PSL2(C)

usually called the holonomy representation.
• We focus on X = S3 \ K a knot complement and G = SL2(C).
• Sometimes (especially in physics contexts) we view this data as a

flat sl2-connection on X.
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The idea

Definition
A SL2(C)-holonomy invariant of knots gives a scalar F(K, ρ) ∈ C, where
ρ : π1(S3 \ K) → SL2(C). It should depend only on the conjugacy class
(gauge class) of ρ.

From now on, we say holonomy invariant and assume G = SL2(C).

Another perspective
A holonomy invariant assigns a function F(K,−) : X(K) → C to every
knot, where X(K) is the SL2(C)-character variety of K.

25



Examples of holonomy invariants

Torsion
The Reidemeister torsion τ(K, ρ) = τ(S3 \ K, ρ) depends on K and
ρ ∈ R(K). It is gauge-invariant, so we get a function

τ(K,−) : X(K) → C

i.e. a holonomy invariant.
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Examples of holonomy invariants

Complex volume
The complex volume of a hyperbolic knot

Vol(K) + iCS(K) ∈ C/iπ2Z

can be computed by evaluating a certain characteristic class of flat
PSL2(C)-bundles on the finite-volume hyperbolic structure of S3 \ K.
We can think of this as a holonomy invariant by evaluating that class
on other elements of X(K).
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The knot group

• K a knot in S3

• πK = π1(S3 \ K) is finitely
generated, say by meridians

• All meridians of K are conjugate
• For a link L there’s one

conjugacy class for each
component

Two meridians of the figure-eight
knot
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Colored braids

g1

g2

g3 g−1
3 g1g3

g3

g1g2g−1
1

g1

• Label g ∈ SL2(C) gives holonomy of meridian around it
• Braid group acts nontrivially on gi , get a groupoid with

objects tuples (g1, . . . , gn) of group elements gi ∈ SL2(C)
morphisms braids β : (g1, . . . , gn) → (g′1, . . . , g′n)

Closures of endomorphisms give links L with ρ : πL → SL2(C)
• To get invariants, want a representation (functor) from the colored

braid groupoid
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Well, not quite

We need to use a more complicated description:
χ1

χ2

χ3 χ′′
1

χ′
3

χ′
2

χ′
1

Notice both labels change at a crossing. What does this mean?

• Usual description (Wirtinger presentation) of knot group from a
diagram has one generator for each arc.

• We instead want a groupoid with two generators for each segment.
• Path above a segment labeled by χ gives χ+, path below gives χ−
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Fundamental groupoid

x+ix−i

i

The generators associated to
segment i

1

2 1′

2′

x−1 x+2 x+2′x−1′

There are relations at each crossing,
such as the above

• Seems more complicated: isn’t in practice.
• More natural in relation to hyperbolic geometry.
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Factorized groups

• Labels are

χ = (χ+, χ−)

=

([
κ 0
ϕ 1

]
,

[
1 ϵ

0 κ

])
∈ SL2(C)∗ ⊂ GL2(C)× GL2(C)

• Get a birational map ψ : SL2(C)∗ → SL2(C) by

ψ(χ) = χ+(χ−)−1 =

[
κ −ϵ
ϕ κ−1(1 − ϵϕ)

]

Think of ψ(χ) as the holonomy around the strand labeled by χ
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Factorized groups

More generally:

1

2

3

g3

χ+
1

χ+
2

χ+
3

(
χ−

3
)−1

g3 = χ+
1 χ

+
2 χ

+
3 (χ

−
3 )−1(χ+

2 )
−1(χ+

1 )
−1
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Factorized groups

The pictures on the last slide extend to a functor

Ψ : B(SL2(C)∗) → B(SL2(C))

from the category of SL2(C)∗-colored braids to the category of
SL2(C)-colored braids. Ψ is not surjective, but:

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin
[Bla+20])
Every SL2(C)-colored braid is conjugate to one in the image of Ψ (i.e.
that can be represented in terms of the χ.)

In their language, we have a generic biquandle factorization of the
conjugation quandle of SL2(C).
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What now?

To construct a holonomy version of JN(K) (the Nth colored Jones
polynomial at a root of unity) we want:

1. A family Vχ of N-dimensional modules parametrized by SL2(C)∗

2. A braiding
c : Vχ1 ⊗ Vχ2 → Vχ2′ ⊗ Vχ1′

respecting the transformation rules for the χi.

Recovering JN(K)
We want to be able to recover the ordinary invariant. One way is to ask
that V± id = VN is the original N-dimensional highest weight module at
q = ξ.
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Constructing the holonomy
invariant



The center for generic q

Recall that simple A-modules are parametrized by the center of A.

Generic q
For q not a root of unity, the center of Uq is generated by the Casimir

Ω =
qK + q−1K−1

(q − q−1)2 + FE

whose action determines the isomorphism class of any finite-dimensional
simple Uq-module.
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The center at a root of unity

Key algebra fact
When q = ξ = exp(πi/N) Uξ has a large center.
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The center at a root of unity

• At q = ξ, get central subalgebra Z0 = C[EN,FN,K±N]

• For4 central characters χ : Z0 → C,

χ ∈ SpecZ0 ↔

([
χ(KN) 0
χ(KNFN) 1

]
,

[
1 χ(EN)

0 χ(KN)

])

↔ ψ(χ) =

[
χ(KN) −χ(EN)

χ(KNFN) χ(KN)− χ(KNENFN)

]
∈ SL2(C)

• Full center is Z = Z0[Ω]/(polynomial relation)
• Action of central Casimir Ω given by Nth root of an eigenvalue of
ψ(χ)

• Characters χ : Z → C are in bijection with simple Uξ-modules.

4There are some normalizations I’m suppressing. Can also remove them by using a
different presentation of Uq.
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Deformations of VN

Theorem
For any χ : Z0 → C there are N
simple projective Uξ-modules Vχ,µ

with central character χ0.

Isomorphism class is determined by
fractional eigenvalue µ with

µN + µ−N = trψ(χ)

i.e. by an Nth root of an eigenvalue
of the holonomy around a meridian
colored by χ ∈ SpecZ0 = SL2(C)∗.

χ(KN) = κ, χ(EN) = ϵ

v0 κ1/N

v1 κ1/Nξ−2

...
...

vN−1 κ1/Nξ−2(N−1)

E

E

E

E

E · vk = vk−1

E · v0 = ϵvN−1
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A holonomy invariant from the Vχ,µ

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin
[Bla+20])
There is a holonomy invariant BGPRN L, ρ assigning Vχ,µ to strands,
well-defined up to a N2th root of unity.

Because of Casimirs before, also depends on a fractional eigenvalue µ of
holonomy around each component of L. Natural to consider ρ in
extended character variety

XN(L) → X(L)

an N|components(L)|-fold cover of the usual character variety.
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Issues defining BGPR

• Not every ρ : πL → SL2(C) can be written using
SL2(C)∗-coordinates, but can show it’s generically true. (Gave this
theorem earlier.)

• Quantum dimensions of Vχ,µ vanish, so normal way of taking
closures gives 0 for every link. Fixable with modified dimensions of
Geer, Patureau-Mirand, and Turaev [GPT09].

• The braiding is hard to define.
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Gauge invariance

However, gauge invariance is easy to prove. Two pictures explain why:

Dχ

γ

χ

γ

D′

γ

χ

γ

χ

Here D′ is gauge-equivalent to D.
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The braiding for cyclic modules

• Recall braiding was given by action of

R = qH⊗H
∞∑

n=0
cnEn ⊗ Fn

• Since E ⊗ F doesn’t act nilpotently on Vχ1 ⊗ Vχ2 , this doesn’t
converge!

• Can fix by understanding automorphism

R : U⊗2
ξ → U⊗2

ξ

given by conjugation by R.
• Still doesn’t give an explicit formula for braiding.
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Improving BGPR

Theorem (My PhD thesis [McP21a])
There is a version JN(L, ρ) of BGPR defined up to a 2Nth root of unity,
including an explicit formula for the braiding matrices.

• Currently working on how to define the phase absolutely; may
require some extra structure.

• Coordinates used to compute braiding have direct connection to
hyperbolic geometry via octahedral decomposition of the link
complement

• Braiding factors into four cyclic quantum dilogarithms
• JN(L, ρ) should be part of Chern-Simons TQFT with noncompact

gauge group SL2(C); usual case is compact group SU(2)
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Application to the volume conjecture

Conjecture

1. Asymptotics of JN(K, ρhyp) determine Vol(K)
2. Can relate asymptotics of colored Jones JN(K, (−1)N+1) and

hyperbolically-twisted colored Jones JN(K, ρhyp)

Together, would give the volume conjecture.

JN(K, (−1)N+1) ↔ JN(K, ρhyp)

invariant in volume conjecture should know about Vol(K)
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Examples of VN(K, ρ)

• Unfortunately I don’t have many examples.
• Issue with braiding normalization made BGPR very hard to compute
• Definition of JN is recent and not quite done.
• Can say things in some special cases.
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The abelian case

Kashaev’s quantum dilogarithm
When ρ = (−1)N+1 is ± the trivial representation,

JN(K, (−1)N+1) = JN(K)

is the quantum dilogarithm, i.e. the Nth colored Jones polynomial
evaluated at exp(2πi/N).

The Akutsu-Deguchi-Ohtsuki invariant
When ρ = αt sends every meridian to diag(t, t−1),

JN(K, αt) = ADON(t)

is the Nth ADO invariant.

The ADO invariant is a higher-order Alexander polynomial. When N = 2,
it is exactly the Conway potential/Alexander polynomial/abelian
Reidemeister torsion.
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Relation with the torsion

Theorem (Me [McP21b])
For any link L and ρ ∈ X2(L) that does not have 1 as an eigenvalue,

J2(L, ρ)J2(L, ρ) = τ(S3 \ L, ρ)

where L is the mirror image and τ is the Redemeister torsion twisted by
ρ.

Proof idea.
There is a Schur-Weyl duality between the braiding for Uξ defining J2
and the twisted Burau representation defining τ . Need to use a
“quantum double” to get the norm-square on the left hand side.
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Another holonomy invariant

Quantum hyperbolic invariants
Baseilhac and Benedetti [BB04] constructed quantum hyperbolic
invariants of 3-manifolds with links inside them via state-sums and
triangulations.

• They used quantum dilogarithms, just like in our construction
• Their invariants appear to be closely related to our nonabelian

quantum dilogarithm.
• Our version is much more directly related to the Jones polynomial
• Our version gives relation with torions
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Another holonomy invariant, with examples

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and
Snyder [Che+21] constructed a holonomy invariant. Set ζ = exp(2πi/ℓ)
for ℓ odd.
Fact
Uζ/ kerχ is a simple bimodule of dimension N2 for any Z-character χ.

Theorem
By assigning a strand of a knot diagram with holonomy χ the module
Uζ/ kerχ, we get a holonomy invariant KR(K, ρ) of knots. KR(K,−) is
a rational function on a N-fold cover XN(K) of X(K).

For technical reasons it is much easier to define the braiding.
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KR for the figure-eight knot

K = 41
longitude meridian

X(41) = C[M±1, L±1]/
⟨
(L − 1)(L2M4

+L(−M8 + M6 + 2M4 + M2 − 1) + M4)
⟩

M±1 are the eigenvalues of the
meridian and L±1 are the
eigenvalues of the longitude.
To get XN(41), replace M with
µN = M

51



KR for the figure-eight knot

(L − 1) factor is the commutative component and the other is geometric.
We compute that, for N = 3,

KR(K)comm =
(
µ4 + 3µ2 + 5 + 3µ−2 + µ−4)2

KR(K)geom = 3(µ2 + µ−2)(µ+ 1 + µ−1)3(µ− 1 + µ−1)3

Complete hyperbolic structure of 41 complement corresponds to points
µ = 1, exp(2πi/3), exp(4πi/3) on geometric component.

Observation
KR(K)geom vanishes for µ a primitive root of unity. Seems to extend to
other knots and odd N for ζ = exp(2πi/N); does not occur for
ξ = exp(πi/N) and N even.
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Future examples?

It should be possible to repeat this computation with JN instead of KR
and get rational functions on the character variety (or A-polynomial
curve).
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Questions?
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Bonus: Why is it called a
quantum dilogarithm?



The dilogarithm

• The dilogarithm is

L2(x) = −
∫ x

0

log(1 − z)
z dz

and Rogers’ dilogarithm is

L(x) = L2(x) + log(1 − x) log(x)/2.

L(x) can be used to compute complex volumes of tetrahedra, hence
of manifolds.

• It satisfies the 5-term relation

L(x) + L(y)− L(xy) = L
(

x − xy
1 − xy

)
+ L

(
y − xy
1 − xy

)
which is related to the 3-2 move on triangulations



The quantum dilogarithm

• Faddeev and Kashaev showed the q-series

Ψ(x) =
∞∏

n=1
(1 − xqn)

is a q-analog of L(x) and satisfies a noncommutative 5-term relation.
• The cyclic quantum dilogarithm

L(B,A|n) =
n∏

k=1
(1 − ξ2kB)/A

for AN + BN = 1 is a root-of-unity analogue of Ψ(x).



Link invariants from the quantum dilogarithm

• By taking a certain singular limit Kashaev defined his quantum
dilogarithm invariant.

• By replacing Rogers dilogarithms L(x) with cyclic dilogarithms
L(B,A|n), Baseilhac and Benedetti defined holonomy invariants BN
for triangulated 3-manifolds with links inside them.

• BN is constructed as a state-sum, with one function L(B,A|n) for
each tetrahedron.



The nonabelian quantum dilogarithm

• Even though the definition of JN appears quite different from BN,
recent computations of the braiding show they are closely related.

• In particular, the braiding defined by JN factors into a product of
four linear maps, each of which is associated to a tetrahedron in the
octahedral decomposition of the knot complement.

• To emphasize the connection with Kashaev’s construction and the
incorporation of nonabelian ρ ∈ XN(K), we used the name
nonabelian quantum dilogarithm.



The nonabelian quantum
dilogarithm and the torsion



An explicit relationship

Theorem (C. [McP21b])
For any ρ ∈ X2(K),

J2(K, ρ)J2(K, ρ) = τ(K, ρ)

where K is the mirror image of K.

Comparing
∇K(t)∇K(t) = τ(K, αt)

we think of J2(K, ρ) as a nonabelian Conway potential.
How do we compute the right-hand side? Use the Burau representation.



The Burau representation

Consider colored braids on b strands. Write ρ = (χ1, . . . , χb) for an
object of B2(SL2(C)), equivalently a representation

ρ : π1(Db) → SL2(C)

where Db is a b-punctured disc. Let β be a braid on b stands, i.e. an
element of Map(Db, ∂Db). As a colored braid, it becomes a morphism
β : ρ→ ρ′.

Definition
The Burau representation is the action on twisted locally-finite
homology:

B(β) : H1(Db; ρ) → H1(Db; ρ
′)

induced by the action of β on Db.



Computing the torsion

Proposition
If (K, ρ) is the closure of β, then

τ(K, ρ) = det(1 − B(β))
det(1 − ρ(y))

y is a path around every strand, as above.



Determinant to trace

To make this a trace, let
∧
B be the action on the exterior algebra of

homology. Then

str
(∧

B(β)
)
= det(1 − B(β)).

Here str is the Z/2-graded trace: multiply action on degree k part by
(−1)k.



Multiplicity spaces

We want to understand J2(β) : J2(ρ) → J2(ρ), ρ = (χ1, . . . , χb). First
we need to understand J2(ρ). Use:

Proposition

J2(ρ) =
b⊗

i=1
Vχi

∼= X+ ⊗C Vχ+ ⊕ X− ⊗C Vχ−

Here:

• χ± are characters corresponding to the total holonomy ρ(y)
• there are two because there are two choices ±µ of fractional

eigenvalue for ρ(y)
• Action of J2(β) factors through multiplicity spaces X±



Schur-Weyl duality

Theorem (Me [McP21b])
There is a subalgebra Cb of U⊗b

ξ that

1. (super)commutes with the image of ∆U in the tensor power,
2. is isomorphic as a vector space to

∧
B(χ1, . . . , χb),

3. such that the braid group action on Cb ⊆ U⊗b
ξ agrees with B.

Compare Schur-Weyl duality between tensor powers of SLn and the
symmetric group.



Computing J2

Corollary (Wrong)
The Z/2-graded multiplicity space X = X+ ⊕ X− is isomorphic to∧

B(ρ). This is compatible with the braid action, so J2(β) acts on X
by
∧

B(β).

The theorem about τ(K, ρ) would follow immediately, except that this is
false!



Fixing the idea

• The problem is that Cb does not act faithfully on J2(χ1, . . . , χn).
• Among other reasons, dimensions don’t match.
• To fix, consider a “quantum double”

T2 = J2 ⊠ J 2

• Then the theorem works and

τ(K, ρ) = T2(K, ρ) (by Schur-Weyl)
= J2(K, ρ)J2(K, ρ) (by definition)
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