Making the Jones polynomial more geometric

Calvin McPhail-Snyder
September 6, 2021
Duke University

Acknowledgements

- Thank you to Demetre Kazaras (et al.) for inviting me to give this talk.
- Various parts of this research program are due to myself and:
- C Blanchet
- KC Chen
- R Kashaev
- N Geer
- S Morrison
- B Patureau-Mirand
- N Reshetikhin
- N Snyder
- V Turaev
- I will make more specific references later on.

Motivation

- Quantum invariants like the Jones polynomial are defined in an algebraic way.
- However, there is now a lot of interest in what they say about the geometry of knots and manifolds.
- I want to talk about a research program to address these questions by constructing more geometric quantum invariants.

Plan of the talk

- Discuss quantum invariants with examples, so I can explain what I mean by "algebraic".
- State a conjectured relationship to geometry.
- Give some idea of how to twist the quantum invariants by geometric data.

Quantum invariants

What is a quantum invariant?

- A knot invariant is a function

$$
\{\text { knots }\} \rightarrow \text { numbers, polynomials, etc. }
$$

- For our purposes, a quantum invariant is a topological invariant constructed using the representation theory of quantum groups.
- Generally quantum invariants appear as part of topological quantum field theories (TQFTs).

Example: the Jones polynomial

Quantum $\mathfrak{s l}_{2}$

$\mathcal{U}_{q}=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is an algebra over $\mathbb{C}\left(q, q^{-1}\right)$ that we can think of as a q-analogue of the universal enveloping algebra of $\mathfrak{s l}_{2}$.
For q not a root of unity, it acts a lot like $\mathfrak{s l}_{2}$.
In particular, there is one ${ }^{1}$ representation of dimension $N=1,2, \ldots$ which we call V_{N}.

[^0]
Highest-weight representations

- $\mathfrak{s l}_{2}$ has generators E, F, H, relations

$$
\begin{aligned}
{[E, F] } & =H \\
{[H, E] } & =2 E \\
{[H, F] } & =-2 F
\end{aligned}
$$

- Weight modules decompose into H -eigenspaces
- A highest-weight module is generated by v with $E v=0$, $H v=\lambda v$ (it has highest weight $\lambda)$

Fact

Any finite-dimensional weight module of dimension N looks like
$F\left({ }^{\bullet}\right) E$

$\left.F()^{5}\right) E$

$$
\lambda=N-1
$$

$$
N-3
$$

$$
-(N-1)
$$

Quantum highest-weight representations

- For $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$, replace H with $K=q^{H}$

$$
\begin{aligned}
{[E, F] } & =\frac{K-K^{-1}}{q-q^{-1}} \\
K E & =q^{2} E K \\
K F & =q^{-2} F K
\end{aligned}
$$

- Weight modules are still described by highest weights
- Important difference: \mathcal{U}_{q} is non-cocommutative: $V \otimes W$ and $W \otimes V$ are different representations.

Fact

Any finite-dimensional weight module of dimension N looks like

Braid group representations

Consider a braid β :

Want a \mathcal{U}-module map $\mathcal{V}_{N}(\beta): V_{N}^{\otimes 3} \rightarrow V_{N}^{\otimes 3}$.
Key ingredient: value $\mathcal{V}_{N}(\sigma): V_{N} \otimes V_{N} \rightarrow V_{N} \otimes V_{N}$ on a braid generator.

Example

The braid above will be mapped to

$$
\mathcal{V}_{N}(\beta)=\left(\mathcal{V}_{N}(\sigma)^{-1} \otimes \mathrm{id}_{V_{N}}\right)\left(\mathrm{id}_{V_{N}} \otimes \mathcal{V}_{N}(\sigma)\right)
$$

Getting the braiding

For any \mathcal{U}_{q}-modules V, W, define $\sigma_{V, W}: V \otimes W \rightarrow W \otimes V$ by

$$
\sigma_{V, w}(x)=\tau(\mathbf{R} \cdot x)
$$

where $\mathbf{R} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}$ is the universal R-matrix ${ }^{2}$ and $\tau(v \otimes w)=w \otimes v$.

Theorem

σ satisfies braid relation

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma) .
$$

In terms of R, this is the "Yang-Baxter relation"

Corollary

Any \mathcal{U}_{q}-module V determines a braid group representation.
${ }^{2}$ Actually it's in a sort of completion of $\mathcal{U}_{q} \otimes \mathcal{U}_{q}$. This will come up later.

Example: the Jones polynomial

- We want to compute the Jones polynomial of L. Let β be a braid on on b strands whose closure is L.
- $V_{2}(\beta)$ is a map $V_{2}^{\otimes b} \rightarrow V_{2}^{\otimes b}$.
- Determined by value $\mathcal{V}_{2}(\sigma): V_{2} \otimes V_{2} \rightarrow V_{2} \otimes V_{2}$ on braid generators.
- $\mathcal{V}_{2}(\sigma)$ is a 4×4 matrix with entries in $\mathbb{C}\left[q, q^{-1}\right]$.
- Explicitly given by action of

$$
\mathbf{R}=q^{H \otimes H} \sum_{n=0}^{\infty} c_{n} E^{n} \otimes F^{n}
$$

on $V_{2} \otimes V_{2}$.

Taking closures

We think of the closure

as a trace, and if the closure of β is L, then (up to some framing issues)

$$
\operatorname{tr}_{q} \mathcal{V}_{2}(\beta)=\mathrm{V}_{2}(\beta)
$$

is the Jones polynomial of L.

Cups and caps

$$
\begin{aligned}
& \operatorname{coev}_{V}: \mathbb{k} \rightarrow V^{*} \otimes V \\
& \operatorname{coev}_{V}(1)=\sum_{i} v^{i} \otimes v_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ev}_{V}: V \otimes V^{*} \rightarrow \mathbb{k} \\
& \operatorname{ev}_{v}(v \otimes f)=f(v)
\end{aligned}
$$

Notice these don't match. Other orientations are a bit more complicated, leads to a twist in definition of quantum trace tr_{q}.

Graphical calculus

Can write action of \mathbf{R} in terms of other maps:

which can be used to define the Jones polynomial without using quantum groups at all.

An example

$$
\mathrm{V}_{2}\left(4_{1}\right)=q^{-4}-q^{-2}+1-q^{2}+q^{4}
$$

Figure eight knot 4_{1}

Computing the Jones polynomial

To compute the Jones polynomial $V_{2}(L)$ of a link L :

- Represent L as the closure of a braid β on b strands
- Compute the $2^{b} \times 2^{b}$ matrix $\mathcal{V}_{2}(\beta)$
- Its (quantum) trace is a Laurent polynomial $V_{2}(L)$ in q^{2}
- This is an invariant ${ }^{3}$ of L called the Jones polynomial

This is an example of the Reshetikhin-Turaev construction applied to the representation V_{2}.

[^1]
The colored Jones polynomial

- We can repeat the Resethikin-Turaev construction defining $\mathrm{V}_{2}(L)$ with any representation of \mathcal{U}_{q} (or any quantum group).

Definition

The quantum invariant assigned to a link L by the N-dimensional \mathcal{U}_{q}-module V_{N} is the N th colored Jones polynomial $V_{N}(L)$.

- We can do this diagrammatically in terms of cables of links, or by using Jones-Wenzl projectors

Algebra \rightarrow topology

This process was very algebraic. I used words like:

- quantum group (a q-analog of a Lie algebra/group)
- trace
- representation (of a group/algebra)

I did not use more topological/geometric ideas like

- homology/fundamental groups
- essential surfaces
- geometrization

However, all this algebra still knows about geometry!

Value at roots of unity

We are most interested in particular values for knots K. Set $\xi=\exp (\pi i / N)$ and normalize so that $V_{N}($ unknot $)=1$.

Definition

The complex number

$$
\mathrm{J}_{N}(K)=\left.\mathrm{V}_{N}(K)\right|_{q=\xi}
$$

is called the Nth quantum dilogarithm of K.
Why the name? We will explain later.

Value at roots of unity

Figure-eight knot

Set $\{k\}=\xi^{k}-\xi^{-k}$. Then

$$
\mathrm{J}_{N}\left(4_{1}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\{N-k\}\{N+k\} .
$$

- Computing these closed formulas for all N is hard!
- One reason: if K is presented as the closure of a braid on b strands, then computing $\mathrm{J}_{N}(K)$ involves the trace of a $N^{b} \times N^{b}$ matrix.
- This one comes from writing 4_{1} as surgery on the Borromean rings.

So far, only algebra

- The quantum dilogarithm (and things like it) are algebraic: coming from representation theory.
- What does it mean that $\mathrm{J}_{N}\left(4_{1}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\{N-k\}\{N+k\}$?

Geometric connections

Theorem

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|\mathrm{~J}_{N}\left(4_{1}\right)\right|}{N}=2.02988 \ldots=\operatorname{Vol}\left(4_{1}\right)
$$

where $\operatorname{Vol}(K)$ is the volume of the complete hyperbolic structure of $S^{3} \backslash K$.

Conjecture (Volume conjecture [Kas97; MM01])

For any hyperbolic knot K,

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|\mathrm{~J}_{N}(K)\right|}{N}=\operatorname{Vol}(K) .
$$

- There are versions for complex volume, for knots in 3-manifolds, for 3-manifolds...
- In every case where the left-hand limit is known to exist the conjecture holds.

Hyperbolic geometry and knot complements

Definition

A knot K in S^{3} is hyperbolic if it admits a complete finite-volume constant-negative curvature metric on its complement. Can be described as a faithful discrete representation

$$
\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right) .
$$

Up to conjugacy ρ is a homotopy invariant of $S^{3} \backslash K!$

Theorem

Every knot in S^{3} is:

- a torus knot,
- a satellite knot (composed of other knots),
- hyperbolic.

Hence most "irreducible" knots are hyperbolic.

How does J_{N} know about hyperbolic geometry?

How does J_{N} know about hyperbolic geometry?

- It's a conjecture, so no one really knows.
- I can now get to the main point of my talk: a program aimed at answering this sort of question.
- Along the way I hope we can define some new, even better knot invariants.

Holonomy invariants

The idea

- To describe geometry of a topological space X, pick a (conjugacy class of) representations $\pi_{1}(X) \rightarrow G$ for G a Lie group
- For example, a hyperbolic structure on a 3 -manifold X is given by a

$$
\rho: \pi_{1}(X) \rightarrow \operatorname{Isom}\left(\mathbb{H}^{3}\right)=\mathrm{PSL}_{2}(\mathbb{C})
$$

usually called the holonomy representation.

- We focus on $X=S^{3} \backslash K$ a knot complement and $G=\mathrm{SL}_{2}(\mathbb{C})$.
- Sometimes (especially in physics contexts) we view this data as a flat $\mathfrak{s l}_{2}$-connection on X.

The idea

Definition

A $\mathrm{SL}_{2}(\mathbb{C})$-holonomy invariant of knots gives a scalar $F(K, \rho) \in \mathbb{C}$, where $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$. It should depend only on the conjugacy class (gauge class) of ρ.

From now on, we say holonomy invariant and assume $G=\mathrm{SL}_{2}(\mathbb{C})$.

Another perspective

A holonomy invariant assigns a function $F(K,-): \mathfrak{X}(K) \rightarrow \mathbb{C}$ to every knot, where $\mathfrak{X}(K)$ is the $\mathrm{SL}_{2}(\mathbb{C})$-character variety of K.

Examples of holonomy invariants

Torsion

The Reidemeister torsion $\tau(K, \rho)=\tau\left(S^{3} \backslash K, \rho\right)$ depends on K and $\rho \in \mathfrak{R}(K)$. It is gauge-invariant, so we get a function

$$
\tau(K,-): \mathfrak{X}(K) \rightarrow \mathbb{C}
$$

i.e. a holonomy invariant.

Examples of holonomy invariants

Complex volume

The complex volume of a hyperbolic knot

$$
\operatorname{Vol}(K)+i \operatorname{CS}(K) \in \mathbb{C} / i \pi^{2} \mathbb{Z}
$$

can be computed by evaluating a certain characteristic class of flat $\mathrm{PSL}_{2}(\mathbb{C})$-bundles on the finite-volume hyperbolic structure of $S^{3} \backslash K$. We can think of this as a holonomy invariant by evaluating that class on other elements of $\mathfrak{X}(K)$.

The knot group

- K a knot in S^{3}
- $\pi_{K}=\pi_{1}\left(S^{3} \backslash K\right)$ is finitely generated, say by meridians
- All meridians of K are conjugate
- For a link L there's one conjugacy class for each component

Two meridians of the figure-eight knot

Colored braids

- Label $g \in \mathrm{SL}_{2}(\mathbb{C})$ gives holonomy of meridian around it
- Braid group acts nontrivially on g_{i}, get a groupoid with objects tuples $\left(g_{1}, \ldots, g_{n}\right)$ of group elements $g_{i} \in S L_{2}(\mathbb{C})$ morphisms braids $\beta:\left(g_{1}, \ldots, g_{n}\right) \rightarrow\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$
Closures of endomorphisms give links L with $\rho: \pi_{L} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$
- To get invariants, want a representation (functor) from the colored braid groupoid

Well, not quite

We need to use a more complicated description:

Notice both labels change at a crossing. What does this mean?

- Usual description (Wirtinger presentation) of knot group from a diagram has one generator for each arc.
- We instead want a groupoid with two generators for each segment.
- Path above a segment labeled by χ gives χ^{+}, path below gives χ^{-}

Fundamental groupoid

 segment i

- Seems more complicated: isn't in practice.
- More natural in relation to hyperbolic geometry.

Factorized groups

- Labels are

$$
\begin{aligned}
\chi & =\left(\chi^{+}, \chi^{-}\right) \\
& =\left(\left[\begin{array}{ll}
\kappa & 0 \\
\phi & 1
\end{array}\right],\left[\begin{array}{cc}
1 & \epsilon \\
0 & \kappa
\end{array}\right]\right) \in \mathrm{SL}_{2}(\mathbb{C})^{*} \subset \mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{2}(\mathbb{C})
\end{aligned}
$$

- Get a birational map $\psi: \mathrm{SL}_{2}(\mathbb{C})^{*} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ by

$$
\psi(\chi)=\chi^{+}\left(\chi^{-}\right)^{-1}=\left[\begin{array}{cc}
\kappa & -\epsilon \\
\phi & \kappa^{-1}(1-\epsilon \phi)
\end{array}\right]
$$

Think of $\psi(\chi)$ as the holonomy around the strand labeled by χ

Factorized groups

More generally:

Factorized groups

The pictures on the last slide extend to a functor

$$
\psi: \mathbb{B}\left(\mathrm{SL}_{2}(\mathbb{C})^{*}\right) \rightarrow \mathbb{B}\left(\mathrm{SL}_{2}(\mathbb{C})\right)
$$

from the category of $\mathrm{SL}_{2}(\mathbb{C})^{*}$-colored braids to the category of $\mathrm{SL}_{2}(\mathbb{C})$-colored braids. Ψ is not surjective, but:

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20])
Every $\mathrm{SL}_{2}(\mathbb{C})$-colored braid is conjugate to one in the image of Ψ (i.e. that can be represented in terms of the χ.)

In their language, we have a generic biquandle factorization of the conjugation quandle of $\mathrm{SL}_{2}(\mathbb{C})$.

What now?

To construct a holonomy version of $\mathrm{J}_{N}(K)$ (the N th colored Jones polynomial at a root of unity) we want:

1. A family V_{χ} of N-dimensional modules parametrized by $\mathrm{SL}_{2}(\mathbb{C})^{*}$
2. A braiding

$$
c: V_{\chi_{1}} \otimes V_{\chi_{2}} \rightarrow V_{\chi_{2^{\prime}}} \otimes V_{\chi_{1^{\prime}}}
$$

respecting the transformation rules for the χ_{i}.
Recovering $\mathrm{J}_{N}(K)$
We want to be able to recover the ordinary invariant. One way is to ask that $V_{ \pm \text {id }}=V_{N}$ is the original N-dimensional highest weight module at $q=\xi$.

Constructing the holonomy

 invariant
The center for generic q

Recall that simple A-modules are parametrized by the center of A.

Generic q

For q not a root of unity, the center of \mathcal{U}_{q} is generated by the Casimir

$$
\Omega=\frac{q K+q^{-1} K^{-1}}{\left(q-q^{-1}\right)^{2}}+F E
$$

whose action determines the isomorphism class of any finite-dimensional simple \mathcal{U}_{q}-module.

The center at a root of unity

Key algebra fact

When $q=\xi=\exp (\pi i / N) \mathcal{U}_{\xi}$ has a large center.

The center at a root of unity

- At $q=\xi$, get central subalgebra $\mathcal{Z}_{0}=\mathbb{C}\left[E^{N}, F^{N}, K^{ \pm N}\right]$
- For ${ }^{4}$ central characters $\chi: \mathcal{Z}_{0} \rightarrow \mathbb{C}$,

$$
\begin{aligned}
\chi \in \operatorname{Spec} \mathcal{Z}_{0} & \leftrightarrow\left(\left[\begin{array}{cc}
\chi\left(K^{N}\right) & 0 \\
\chi\left(K^{N} F^{N}\right) & 1
\end{array}\right],\left[\begin{array}{cc}
1 & \chi\left(E^{N}\right) \\
0 & \chi\left(K^{N}\right)
\end{array}\right]\right) \\
& \leftrightarrow \psi(\chi)=\left[\begin{array}{cc}
\chi\left(K^{N}\right) & -\chi\left(E^{N}\right) \\
\chi\left(K^{N} F^{N}\right) & \chi\left(K^{N}\right)-\chi\left(K^{N} E^{N} F^{N}\right)
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})
\end{aligned}
$$

- Full center is $\mathcal{Z}=\mathcal{Z}_{0}[\Omega] /$ (polynomial relation)
- Action of central Casimir Ω given by N th root of an eigenvalue of $\psi(\chi)$
- Characters $\chi: \mathcal{Z} \rightarrow \mathbb{C}$ are in bijection with simple \mathcal{U}_{ξ}-modules.

[^2]
Deformations of V_{N}

Theorem

For any $\chi: \mathcal{Z}_{0} \rightarrow \mathbb{C}$ there are N simple projective \mathcal{U}_{ξ}-modules $V_{\chi, \mu}$ with central character χ_{0}.

Isomorphism class is determined by fractional eigenvalue μ with

$$
\mu^{N}+\mu^{-N}=\operatorname{tr} \psi(\chi)
$$

i.e. by an N th root of an eigenvalue of the holonomy around a meridian colored by $\chi \in \operatorname{Spec} \mathcal{Z}_{0}=\mathrm{SL}_{2}(\mathbb{C})^{*}$.

A holonomy invariant from the $V_{\chi, \mu}$

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20])

There is a holonomy invariant $\mathrm{BGPR}_{N} L, \rho$ assigning $V_{\chi, \mu}$ to strands, well-defined up to a N^{2} th root of unity.

Because of Casimirs before, also depends on a fractional eigenvalue μ of holonomy around each component of L. Natural to consider ρ in extended character variety

$$
\mathfrak{X}_{N}(L) \rightarrow \mathfrak{X}(L)
$$

an $N^{|c o m p o n e n t s(L)|}$-fold cover of the usual character variety.

Issues defining BGPR

- Not every $\rho: \pi_{L} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ can be written using $\mathrm{SL}_{2}(\mathbb{C})^{*}$-coordinates, but can show it's generically true. (Gave this theorem earlier.)
- Quantum dimensions of $V_{\chi, \mu}$ vanish, so normal way of taking closures gives 0 for every link. Fixable with modified dimensions of Geer, Patureau-Mirand, and Turaev [GPT09].
- The braiding is hard to define.

Gauge invariance

However, gauge invariance is easy to prove. Two pictures explain why:

Here D^{\prime} is gauge-equivalent to D.

The braiding for cyclic modules

- Recall braiding was given by action of

$$
\mathbf{R}=q^{H \otimes H} \sum_{n=0}^{\infty} c_{n} E^{n} \otimes F^{n}
$$

- Since $E \otimes F$ doesn't act nilpotently on $V_{\chi_{1}} \otimes V_{\chi_{2}}$, this doesn't converge!
- Can fix by understanding automorphism

$$
\mathcal{R}: \mathcal{U}_{\xi}^{\otimes 2} \rightarrow \mathcal{U}_{\xi}^{\otimes 2}
$$

given by conjugation by \mathbf{R}.

- Still doesn't give an explicit formula for braiding.

Improving BGPR

Theorem (My PhD thesis [McP21a])

There is a version $\mathrm{J}_{N}(L, \rho)$ of BGPR defined up to a 2 Nth root of unity, including an explicit formula for the braiding matrices.

- Currently working on how to define the phase absolutely; may require some extra structure.
- Coordinates used to compute braiding have direct connection to hyperbolic geometry via octahedral decomposition of the link complement
- Braiding factors into four cyclic quantum dilogarithms
- $\mathrm{J}_{N}(L, \rho)$ should be part of Chern-Simons TQFT with noncompact gauge group $\mathrm{SL}_{2}(\mathbb{C})$; usual case is compact group $\mathrm{SU}(2)$

Application to the volume conjecture

Conjecture

1. Asymptotics of $\mathrm{J}_{N}\left(K, \rho_{\text {hyp }}\right)$ determine $\mathrm{Vol}(K)$
2. Can relate asymptotics of colored Jones $\mathrm{J}_{N}\left(K,(-1)^{N+1}\right)$ and hyperbolically-twisted colored Jones $\mathrm{J}_{N}\left(K, \rho_{\text {hyp }}\right)$

Together, would give the volume conjecture.
$\mathrm{J}_{N}\left(K,(-1)^{N+1}\right)$
invariant in volume conjecture
$\leftrightarrow \quad \mathrm{J}_{N}\left(K, \rho_{\text {hyp }}\right)$ should know about $\operatorname{Vol}(K)$

Examples of $\mathrm{V}_{N}(K, \rho)$

- Unfortunately I don't have many examples.
- Issue with braiding normalization made BGPR very hard to compute
- Definition of J_{N} is recent and not quite done.
- Can say things in some special cases.

The abelian case

Kashaev's quantum dilogarithm

When $\rho=(-1)^{N+1}$ is \pm the trivial representation,

$$
\mathrm{J}_{N}\left(K,(-1)^{N+1}\right)=\mathrm{J}_{N}(K)
$$

is the quantum dilogarithm, i.e. the N th colored Jones polynomial evaluated at $\exp (2 \pi i / N)$.

The Akutsu-Deguchi-Ohtsuki invariant

When $\rho=\alpha_{t}$ sends every meridian to $\operatorname{diag}\left(t, t^{-1}\right)$,

$$
\mathrm{J}_{N}\left(K, \alpha_{t}\right)=\operatorname{ADO}_{N}(t)
$$

is the Nth ADO invariant.
The ADO invariant is a higher-order Alexander polynomial. When $N=2$, it is exactly the Conway potential/Alexander polynomial/abelian Reidemeister torsion.

Relation with the torsion

Theorem (Me [McP21b])

For any link L and $\rho \in \mathfrak{X}_{2}(L)$ that does not have 1 as an eigenvalue,

$$
\mathrm{J}_{2}(L, \rho) \mathrm{J}_{2}(\bar{L}, \rho)=\tau\left(S^{3} \backslash L, \rho\right)
$$

where \bar{L} is the mirror image and τ is the Redemeister torsion twisted by ρ.

Proof idea.

There is a Schur-Weyl duality between the braiding for \mathcal{U}_{ξ} defining J_{2} and the twisted Burau representation defining τ. Need to use a "quantum double" to get the norm-square on the left hand side.

Another holonomy invariant

Quantum hyperbolic invariants

Baseilhac and Benedetti [BB04] constructed quantum hyperbolic invariants of 3-manifolds with links inside them via state-sums and triangulations.

- They used quantum dilogarithms, just like in our construction
- Their invariants appear to be closely related to our nonabelian quantum dilogarithm.
- Our version is much more directly related to the Jones polynomial
- Our version gives relation with torions

Another holonomy invariant, with examples

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and Snyder [Che+21] constructed a holonomy invariant. Set $\zeta=\exp (2 \pi i / \ell)$ for ℓ odd.

Fact

$$
\mathcal{U}_{\zeta} / \text { ker } \chi \text { is a simple bimodule of dimension } N^{2} \text { for any } \mathcal{Z} \text {-character } \chi \text {. }
$$

Theorem

By assigning a strand of a knot diagram with holonomy χ the module $\mathcal{U}_{\zeta} /$ ker χ, we get a holonomy invariant $\operatorname{KR}(K, \rho)$ of knots. $\operatorname{KR}(K,-)$ is a rational function on a N-fold cover $\mathfrak{X}_{N}(K)$ of $\mathfrak{X}(K)$.

For technical reasons it is much easier to define the braiding.

KR for the figure-eight knot

$K=4_{1}$
longitude meridian
$\mathfrak{X}\left(4_{1}\right)=\mathbb{C}\left[M^{ \pm 1}, L^{ \pm 1}\right] /\left\langle(L-1)\left(L^{2} M^{4}\right.\right.$
$\left.\left.+L\left(-M^{8}+M^{6}+2 M^{4}+M^{2}-1\right)+M^{4}\right)\right\rangle$
$M^{ \pm 1}$ are the eigenvalues of the meridian and $L^{ \pm 1}$ are the eigenvalues of the longitude.
To get $\mathfrak{X}_{N}\left(4_{1}\right)$, replace M with $\mu^{N}=M$

KR for the figure-eight knot

($L-1$) factor is the commutative component and the other is geometric. We compute that, for $N=3$,

$$
\begin{aligned}
\operatorname{KR}(K)_{\text {comm }} & =\left(\mu^{4}+3 \mu^{2}+5+3 \mu^{-2}+\mu^{-4}\right)^{2} \\
\operatorname{KR}(K)_{\text {geom }} & =3\left(\mu^{2}+\mu^{-2}\right)\left(\mu+1+\mu^{-1}\right)^{3}\left(\mu-1+\mu^{-1}\right)^{3}
\end{aligned}
$$

Complete hyperbolic structure of 4_{1} complement corresponds to points $\mu=1, \exp (2 \pi i / 3), \exp (4 \pi i / 3)$ on geometric component.

Observation

$\mathrm{KR}(K)_{\text {geom }}$ vanishes for μ a primitive root of unity. Seems to extend to other knots and odd N for $\zeta=\exp (2 \pi i / N)$; does not occur for $\xi=\exp (\pi i / N)$ and N even.

Future examples?

It should be possible to repeat this computation with J_{N} instead of KR and get rational functions on the character variety (or A-polynomial curve).

Questions?

Bonus: Why is it called a quantum dilogarithm?

The dilogarithm

- The dilogarithm is

$$
L_{2}(x)=-\int_{0}^{x} \frac{\log (1-z)}{z} d z
$$

and Rogers' dilogarithm is

$$
L(x)=L_{2}(x)+\log (1-x) \log (x) / 2
$$

$L(x)$ can be used to compute complex volumes of tetrahedra, hence of manifolds.

- It satisfies the 5-term relation

$$
L(x)+L(y)-L(x y)=L\left(\frac{x-x y}{1-x y}\right)+L\left(\frac{y-x y}{1-x y}\right)
$$

which is related to the 3-2 move on triangulations

The quantum dilogarithm

- Faddeev and Kashaev showed the q-series

$$
\Psi(x)=\prod_{n=1}^{\infty}\left(1-x q^{n}\right)
$$

is a q-analog of $L(x)$ and satisfies a noncommutative 5-term relation.

- The cyclic quantum dilogarithm

$$
L(B, A \mid n)=\prod_{k=1}^{n}\left(1-\xi^{2 k} B\right) / A
$$

for $A^{N}+B^{N}=1$ is a root-of-unity analogue of $\Psi(x)$.

Link invariants from the quantum dilogarithm

- By taking a certain singular limit Kashaev defined his quantum dilogarithm invariant.
- By replacing Rogers dilogarithms $L(x)$ with cyclic dilogarithms $L(B, A \mid n)$, Baseilhac and Benedetti defined holonomy invariants B_{N} for triangulated 3 -manifolds with links inside them.
- B_{N} is constructed as a state-sum, with one function $L(B, A \mid n)$ for each tetrahedron.

The nonabelian quantum dilogarithm

- Even though the definition of J_{N} appears quite different from B_{N}, recent computations of the braiding show they are closely related.
- In particular, the braiding defined by \mathcal{J}_{N} factors into a product of four linear maps, each of which is associated to a tetrahedron in the octahedral decomposition of the knot complement.
- To emphasize the connection with Kashaev's construction and the incorporation of nonabelian $\rho \in \mathfrak{X}_{N}(K)$, we used the name nonabelian quantum dilogarithm.

The nonabelian quantum dilogarithm and the torsion

An explicit relationship

Theorem (C. [McP21b])

For any $\rho \in \mathfrak{X}_{2}(K)$,

$$
\mathrm{J}_{2}(K, \rho) \mathrm{J}_{2}(\bar{K}, \rho)=\tau(K, \rho)
$$

where \bar{K} is the mirror image of K.
Comparing

$$
\nabla_{K}(t) \nabla_{\bar{K}}(t)=\tau\left(K, \alpha_{t}\right)
$$

we think of $\mathrm{J}_{2}(K, \rho)$ as a nonabelian Conway potential.
How do we compute the right-hand side? Use the Burau representation.

The Burau representation

Consider colored braids on b strands. Write $\rho=\left(\chi_{1}, \ldots, \chi_{b}\right)$ for an object of $\mathbb{B}_{2}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$, equivalently a representation

$$
\rho: \pi_{1}\left(D_{b}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})
$$

where D_{b} is a b-punctured disc. Let β be a braid on b stands, i.e. an element of $\operatorname{Map}\left(D_{b}, \partial D_{b}\right)$. As a colored braid, it becomes a morphism $\beta: \rho \rightarrow \rho^{\prime}$.

Definition

The Burau representation is the action on twisted locally-finite homology:

$$
\mathcal{B}(\beta): \mathrm{H}_{1}\left(D_{b} ; \rho\right) \rightarrow \mathrm{H}_{1}\left(D_{b} ; \rho^{\prime}\right)
$$

induced by the action of β on D_{b}.

Computing the torsion

Proposition

If (K, ρ) is the closure of β, then

$$
\tau(K, \rho)=\frac{\operatorname{det}(1-\mathcal{B}(\beta))}{\operatorname{det}(1-\rho(y))}
$$

y is a path around every strand, as above.

Determinant to trace

To make this a trace, let $\bigwedge \mathcal{B}$ be the action on the exterior algebra of homology. Then

$$
\operatorname{str}(\bigwedge \mathcal{B}(\beta))=\operatorname{det}(1-\mathcal{B}(\beta))
$$

Here str is the $\mathbb{Z} / 2$-graded trace: multiply action on degree k part by $(-1)^{k}$.

Multiplicity spaces

We want to understand $\mathcal{J}_{2}(\beta): \mathcal{J}_{2}(\rho) \rightarrow \mathcal{J}_{2}(\rho), \rho=\left(\chi_{1}, \ldots, \chi_{b}\right)$. First we need to understand $\mathcal{J}_{2}(\rho)$. Use:

Proposition

$$
\mathcal{J}_{2}(\rho)=\bigotimes_{i=1}^{b} v_{\chi_{i}} \cong X^{+} \otimes_{\mathbb{C}} V_{\chi_{+}} \oplus X^{-} \otimes_{\mathbb{C}} V_{\chi_{-}}
$$

Here:

- $\chi_{ \pm}$are characters corresponding to the total holonomy $\rho(y)$
- there are two because there are two choices $\pm \mu$ of fractional eigenvalue for $\rho(y)$
- Action of $\mathcal{J}_{2}(\beta)$ factors through multiplicity spaces $X^{ \pm}$

Schur-Weyl duality

Theorem (Me [McP21b])

There is a subalgebra \mathfrak{C}_{b} of $\mathcal{U}_{\xi}^{\otimes b}$ that

1. (super)commutes with the image of $\Delta \mathcal{U}$ in the tensor power,
2. is isomorphic as a vector space to $\wedge \mathcal{B}\left(\chi_{1}, \ldots, \chi_{b}\right)$,
3. such that the braid group action on $\mathfrak{C}_{b} \subseteq \mathcal{U}_{\xi}^{\otimes b}$ agrees with \mathcal{B}.

Compare Schur-Weyl duality between tensor powers of SL_{n} and the symmetric group.

Computing J_{2}

Corollary (Wrong)

The $\mathbb{Z} / 2$-graded multiplicity space $X=X^{+} \oplus X^{-}$is isomorphic to $\wedge \mathcal{B}(\rho)$. This is compatible with the braid action, so $\mathcal{J}_{2}(\beta)$ acts on X by $\wedge \mathcal{B}(\beta)$.

The theorem about $\tau(K, \rho)$ would follow immediately, except that this is false!

Fixing the idea

- The problem is that \mathfrak{C}_{b} does not act faithfully on $\mathcal{J}_{2}\left(\chi_{1}, \ldots, \chi_{n}\right)$.
- Among other reasons, dimensions don't match.
- To fix, consider a "quantum double"

$$
\mathcal{T}_{2}=\mathcal{J}_{2} \boxtimes \overline{\mathcal{J}}_{2}
$$

- Then the theorem works and

$$
\begin{aligned}
\tau(K, \rho) & =\mathrm{T}_{2}(K, \rho) & & \text { (by Schur-Weyl) } \\
& =\mathrm{J}_{2}(K, \rho) \mathrm{J}_{2}(\bar{K}, \rho) & & \text { (by definition) }
\end{aligned}
$$

References

[BB04]
Stéphane Baseilhac and Riccardo Benedetti. "Quantum hyperbolic invariants of 3 -manifolds with PSL(2, C)-characters". In: Topology 43.6 (Nov. 2004), pp. 1373-1423. DOI: $10.1016 / \mathrm{j}$. top. 2004.02.001. arXiv: math/0306280 [math.GT].
[Bla+20] Christian Blanchet, Nathan Geer, Bertrand Patureau-Mirand, and Nicolai Reshetikhin. "Holonomy braidings, biquandles and quantum invariants of links with $\mathrm{SL}_{2}(\mathbb{C})$ flat connections". In: Selecta Mathematica 26.2 (Mar. 2020). DOI: 10.1007/s00029-020-0545-0. arXiv: 1806.02787v1 [math.GT].
[Che+21] Kai-Chieh Chen, Calvin McPhail-Snyder, Scott Morrison, and Noah Snyder. Kashaev-Reshetikhin Invariants of Links. Aug. 14, 2021. arXiv: 2108.06561 [math.GT].
[GPT09] Nathan Geer, Bertrand Patureau-Mirand, and Vladimir Turaev. "Modified quantum dimensions and re-normalized link invariants". In: Compositio Mathematica, pp. 196-212. DOI: $10.1112 / s 0010437 \times 08003795$. arXiv: 0711.4229 [math.QA].
[Kas97] Rinat M Kashaev. "The hyperbolic volume of knots from the quantum dilogarithm". In: Letters in mathematical physics 39.3 (1997), pp. 269-275. arXiv: q-alg/9601025 [math.QA].
[KR05] R. Kashaev and N. Reshetikhin. "Invariants of tangles with flat connections in their complements". In: Graphs and Patterns in Mathematics and Theoretical Physics. American Mathematical Society, 2005, pp. 151-172. DoI: 10.1090/pspum/073/2131015. arXiv: 1008.1384 [math.QA].
[McP21a] Calvin McPhail-Snyder. "SL $L_{2}(\mathbb{C})$-holonomy invariants of links". PhD Thesis. UC Berkeley, May 2021. In preparation.
[McP21b] Calvin McPhail-Snyder. "Holonomy invariants of links and nonabelian Reidemeister torsion". In: Quantum Topology (2021). arXiv: 2005.01133 [math. QA]. Forthcoming.
[MM01] Hitoshi Murakami and Jun Murakami. "The colored Jones polynomials and the simplicial volume of a knot". In: Acta Mathematica 186.1 (Mar. 2001), pp. 85-104. Doi: 10.1007/bf02392716. arXiv: math/9905075 [math.GT].

[^0]: ${ }^{1}$ Well, two, but they are almost identical

[^1]: ${ }^{3}$ Modulo some technicalities about framings that are not important here.

[^2]: ${ }^{4}$ There are some normalizations I'm suppressing. Can also remove them by using a different presentation of \mathcal{U}_{q}.

