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Overview

• Quantum invariants like the Jones polynomial are defined in an

algebraic way.

• However, there is now a lot of interest in what they say about the

geometry of knots and manifolds.

• I want to talk about a research program to address these questions

and discuss some examples of these more geometric quantum

invariants

• First: a reminder about what I mean by “algebraic”.
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Quantum invariants



What is a quantum invariant?

• A knot invariant is a function

{knots} → numbers, polynomials, etc.

• For our purposes, a quantum invariant is a topological invariant

constructed using the representation theory of quantum groups.

• Generally quantum invariants appear as part of topological quantum

field theories (TQFTs).
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Example: the Jones polynomial

Quantum sl2

Uq = Uq(sl2) is an algebra over C[q, q−1] that we can think of as a

q-analogue of the universal enveloping algebra of sl2.

For q not a root of unity, it acts a lot like sl2.

In particular, there is one1 representation of dimension N = 1, 2, . . .

which we call VN .

Let’s focus on the 2-dimensional representation V2 for now.

1Well, two, but they are almost identical
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Example: the Jones polynomial

• The Jones polynomial can be defined in terms of a certain braid

group representation V2.

• Let β be a braid on on b strands.

• We think of V2(β) as a map V⊗b2 → V⊗b2 of tensor powers of V2.

• To define V2(σ) : V2 ⊗ V2 → V2 ⊗ V2, need a linear map satisfying

the braid relation. (σ is a braid generator.)

• Explicitly V2(σ) is a 4× 4 matrix with entries in C[q, q−1].
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Example: the Jones polynomial

Key idea

The braiding F(σ) is given by the action of the universal R-matrix2

R ∈ Uq ⊗ Uq:

F(σ)(x) = τ(R · x)

where τ(v ⊗ w) = w ⊗ v .

Can explicitly compute the action of R. Leads to skein relation

= q + q−1

which can be used to define the Jones polynomial without using quantum

groups at all.
2Actually it’s in a sort of completion of Uq ⊗ Uq . This will come up later.
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Computing the Jones polynomial

To compute the Jones polynomial V2(L) of a link L :

• Represent L as the closure of a braid β on b strands

• Compute the 2b × 2b matrix V2(β)

• Its (quantum) trace is a Laurent polynomial V2(L) in q2

• This is an invariant3 of L called the Jones polynomial

This is an example of the Reshetikhin-Turaev construction.

3Modulo some technicalities about framings that are not important here.
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Algebra → topology

This process was very algebraic. I used words like:

• quantum group (a q-analog of a Lie algebra/group)

• trace

• representation (of a group/algebra)

I did not use more topological/geometric ideas like

• homology/fundamental groups

• essential surfaces

• geometrization
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However, all this algebra still knows about

geometry!
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The colored Jones polynomial

• We can repeat the Resethikin-Turaev construction defining V2(L)

with any representation of Uq (or of any quantum group.)

Definition

The quantum invariant assigned to a link L by the N-dimensional irrep

VN of Uq is the Nth colored Jones polynomial VN(L).

• We can do this diagrammatically in terms of cables of links, or by

using Jones-Wenzl projectors
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Value at roots of unity

We are most interested in particular values for knots K .

Set ξ = exp(πi/N) and normalize so that VN(unknot) = 1.

Definition

The complex number

JN(K ) = VN(K )|q=ξ

is called the Nth quantum dilogarithm of K .

Why the name? We will explain later.
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Value at roots of unity

Figure-eight knot

Set {k} = ξk − ξ−k . Then

JN(41) =
N−1∑
j=0

j∏
k=1

{N − k}{N + k}.

• Computing closed formulas like this is hard!

• If K is presented as the closure of a braid on b strands, then

computing JN(K ) involves the trace of a Nb × Nb matrix.
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So far, only algebra

• The quantum dilogarithm (and things like it) are algebraic: coming

from representation theory.

• What does it mean that JN(41) =
∑N−1

j=0

∏j
k=1{N − k}{N + k}?
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Geometric connections

Theorem

2π lim
N→∞

log |JN(41)|
N

= 2.02988 . . . = Vol(41)

where Vol(K ) is the volume of the complete hyperbolic structure of

S3 \ K .

Conjecture (Volume conjecture [Kas97; MM01])

For any hyperbolic knot K ,

2π lim
N→∞

log |JN(K )|
N

= Vol(K ).

• There are versions for complex volume, for knots in 3-manifolds, for

3-manifolds. . .

• In every case where the left-hand limit is known to exist the

conjecture holds.
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How does JN know about hyperbolic geometry?
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How does JN know about hyperbolic geometry?

• It’s a conjecture, so no one really knows.

• I can now get to the main point of my talk: a program aimed at

answering this sort of question.

• Along the way I hope we can define some new, even better knot

invariants.
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Holonomy invariants



The idea

• To describe geometry of a topological space X , pick a (conjugacy

class of) representations π1(X )→ G for G a Lie group

• For example, a hyperbolic structure on a 3-manifold X is given by a

ρ : π1(X )→ Isom(H3) = PSL2(C)

usually called the holonomy representation.

• We focus on X = S3 \ K a knot complement and G = SL2(C).

• Sometimes (especially in physics contexts) we view this data as a flat

sl2-connection on X .

15



The idea

Definition

A SL2(C)-holonomy invariant of knots gives a scalar FK (ρ) ∈ C, where

ρ : π1(S3 \ K )→ SL2(C). It should depend only on the conjugacy class

(gauge class) of ρ.

From now on, we say holonomy invariant and assume G = SL2(C).

Another perspective

A holonomy invariant assigns a function FK : X(K )→ C to every knot,

where X(K ) is the SL2(C)-character variety of K .

Let’s explain that in more detail:
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The representation variety

Definition

The SL2(C)-representation variety of a knot K is the space R(K ) of

homomorphisms

ρ : πK → SL2(C).

where πK = π1(S3 \ K ) is the fundamental group of the knot

complement.

• It is an algebraic variety (a set cut out of Cn by polynomial equations)

• Two representations ρ1, ρ2 are conjugate or gauge-equivalent if

ρ1(y) = gρ2(y)g−1

for all y ∈ πK and some g ∈ SL2(C).
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The character variety

We want to say that conjugate representations are the same:

Definition (Morally correct definition)

The SL2(C)-character variety of a knot K is

X(K ) = R(K )/conjugation

• X(K ) captures lots of important geometric and topological

information about K .

• One reason: PSL2(C) = SL2(C)/{±1} is the isometry group of

hyperbolic 3-space.

• A hyperbolic knot K comes with (two) distinguished point(s) of X(K )

corresponding to the finite-volume hyperbolic structure.
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A technical point

• Taking a naive quotient of R(K ) gives a badly-behaved space (not

separable, etc.) Can fix by setting

X(K ) = Spec(conjugation-invariant functions on R(K ))

= Spec(characters of SL2(C) reps of πK )

= Spec(algebra generated by trace functions trx : ρ 7→ tr ρ(x))

hence the name.

• When we do this we throw out indecomposable but reducible ρ. Not

usually a big deal: ρ with irreducible image are the most important

geometrically.

• If ρ has completely reducible image it factors through the

abelianization H1(S3 \ K ) of πK : good simple examples.
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Takeaway on character varieties

A function f : X(K )→ C is simply a conjugation-invariant function

f : R(K )→ C
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Holonomy invariants

Definition

A SL2(C)-holonomy invariant F assigns every knot a function

FK : X(K )→ C.

• Equivalently, a holonomy invariant is a function on pairs

(K , ρ : πK → SL2(C)) that depends only on the conjugacy class of ρ.

• Some of our examples use a slight variant (a N-fold cover) of X(K )

• We can think of ρ ∈ X(K ) as the holonomy of a flat sl2-connection,

hence the name.
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Examples of holonomy invariants

Torsion

The Reidemeister torsion τ(K , ρ) = τ(S3 \ K , ρ) depends on K and

ρ ∈ R(K ). It is gauge-invariant, so we get a function

τ(K ,−) : X(K )→ C

i.e. a holonomy invariant.
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Examples of holonomy invariants

Complex volume

The complex volume of a hyperbolic knot

Vol(K ) + i CS(K ) ∈ C/iπ2Z

can be computed by evaluating a certain characteristic class of flat

PSL2(C)-bundles on the finite-volume hyperbolic structure of S3 \ K .

We can think of this as a holonomy invariant by evaluating that class on

other elements of X(K ).

23



The knot group

• K a knot in S3

• πK = π1(S3 \ K ) is finitely

generated, say by meridians

• All meridians of K are conjugate

Two meridians of the figure-eight

knot
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Taking the abelian limit

• Before, we mentioned that

trivial/abelian reps ρ give

ordinary knot invariants.

• Consider the one-dimensional

family of representations defined

on meridians by

αt(x) =

[
t 0

0 t−1

]

• The αt have abelian image and

exist for any knot K .

Theorem

τ(K , αt) = ∇K (t)∇K (t−1)

= ∇K (t)2

where ∇K is the Conway potential

of K (up to a constant, the

Alexander polynomial).
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Taking the abelian limit

Proof.

αt is reducible, so τ(K , αt) factors into two pieces. Each factor is an

abelianization map on group rings Z[πK ]→ Z[Z] = Z[t, t−1]. By the

usual arguments, this is the abelian Reidemeister torsion/Alexander

polynomial.

Takeaway

In general X(K ) is complicated and depends on K , but for any K

αt ∈ X(K ). We can evaluate any holonomy invariant on αt to get an

easier example.
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Examples of quantum holonomy

invariants



Some algebra

• Key algebra ingredient: representation theory of Uξ for

q = ξ = exp(πi/N) or q = ζ = exp(2πi/N) a root of unity

• The center of Uξ is birationally equivalent to (a finite cover of)

SL2(C)

• In particular there is a family of simple Uξ-modules indexed by SL2(C)

• Roughly speaking we assign a strand with holonomy g ∈ SL2(C) a

module with central character g

• More details after some examples
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The Kashaev–Reshetikhin invariant

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and

Snyder [Che+21] constructed a holonomy invariant.

Fact

For g ∈ SL2(C), write χg for the associated central Uζ-character and

kerχg the ideal generated by its kernel. Uζ/ kerχg is a simple bimodule

of dimension N2.

(This is not quite right: details later!)

Theorem

By assigning a strand of a knot diagram with holonomy g the module

Uζ/ kerχg , we get a holonomy invariant KR(K , ρ) of knots. KR(K ,−)

is a rational function on a N-fold cover XN(K ) of X(K ).
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Extended character variety

• Recall that any two meridians of a knot K are conjugate (if they

match orientation)

• For ρ ∈ X(K ), eigenvalues of ρ(x) for x a meridian are independent

of x

• A fractional eigenvalue of ρ is a µ with tr ρ(x) = µN + µ−N

Definition

Points of XN(K ) are pairs (ρ, µ) with ρ ∈ X(K ) and µ a fractional

eigenvalue of ρ.

Immediate that XN(K )→ X(K ) is an N-fold cover.
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The figure-eight knot

K = 41

longitude meridian

X(41) = C[M±1, L±1]/
〈
(L− 1)(L2M4

+L(−M8 + M6 + 2M4 + M2 − 1) + M4)
〉

M±1 are the eigenvalues of the

meridian and L±1 are the eigenvalues

of the longitude.

To get XN(41), replace M with

µN = M
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The figure-eight knot

(L− 1) factor is the commutative component and the other is geometric.

We compute that, for N = 3,

KR(K )comm =
(
µ4 + 3µ2 + 5 + 3µ−2 + µ−4

)2
KR(K )geom = 3(µ2 + µ−2)(µ+ 1 + µ−1)3(µ− 1 + µ−1)3

Complete hyperbolic structure of 41 complement corresponds to points

µ = 1, exp(2πi/3), exp(4πi/3) on geometric component.

Observation

KR(K )geom vanishes for µ a primitive root of unity. Seems to extend to

other knots and odd N for ζ = exp(2πi/N); does not occur for

ξ = exp(πi/N) and N even.
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A-polynomial curve

• X(41) had two components parametrized by M and L

• In general, X(K ) could have more components and might not be

canonically parametrized by M and L

• Commutative component is always parametrized by M

• Restriction to just M and L gives the A-polynomial curve

Theorem (Dunfield [Dun99])

For hyperbolic K , geometric component of X(K ) is canonically

parametrized by M and L.

Corollary

For hyperbolic K , KR(K ) is a rational function on the commutative and

geometric components of the A-polynomial curve.
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What about the Jones polynomial?

In the abstract I promised a holonomy invariant extending the colored

Jones polynomial. More precisely:

Goal

A holonomy invariant JN such that JN(K ,±1) (the value at the trivial

representation) recovers the quantum dilogarithm JN(K ) (colored Jones

at a root of unity).

It extends the quantum dilogarithm to ρ ∈ XN(K ) with nonabelian image,

so we call JN the nonabelian quantum dilogarithm.
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Why do we care?

• The modules VN for q = exp(πi/N) are associated to the holonomy

sending every meridian to (−1)N+1.

• Thus, the volume conjecture is about relating JN(K , α(−1)N+1) and

hyperbolic volume.

• The value JN(K , ρhyp) at the complete finite-volume hyperbolic

structure should know about the volume

• We might be able to relate their asymptotics via ideas like:

• analytic continuation,

• resurgence,

• AJ conjecture,

• others?
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Defining JN

Fact

For each (generic) g ∈ SL2(C) there are N irreducible Uξ-modules Vg ,µ

parametrized by fractional eigenvalues of g . For g = (−1)N+1 and

µ = ξN−1 we recover the module VN defining the colored Jones

polynomial.

Theorem (part of my PhD thesis)

There is a holonomy invariant JN assigning Vg ,µ to strands. It is

well-defined up to a 2Nth root of unity.

This is an extension of work of Blanchet, Geer, Patureau-Mirand, and

Reshetikhin [Bla+20]. My improvements are:

• Explicitly computing the braiding matrices

• Working out a more geometric way to describe ρ for link complements
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The abelian case

Kashaev’s quantum dilogarithm

When ρ = α(−1)N+1 is ± the trivial representation,

JN(K , α(−1)N+1) = JN(K )

is the quantum dilogarithm, i.e. the Nth colored Jones polynomial

evaluated at exp(2πi/N).

The Akutsu-Deguchi-Ohtsuki invariant

When ρ = αt and t 6= ±1,

JN(K , αt) = ADON(t)

is the Nth ADO invariant.

The ADO invariant is a higher-order Alexander polynomial. When N = 2,

it is exactly the Conway potential/Alexander polynomial/abelian

Reidemeister torsion.
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Shaped link diagrams

• In this coordinate system we assign shapes:

• a complex number bi to each segment of a link diagram

• a meridian eigenvalue mi to each link component

• Gives ρ : π1(S3 \ L)→ SL2(C) when they satisfy a certain set of

equations

• These are exactly the octahedral gluing equations of Kim, Kim, and

Yoon [KKY18].

• Related to an ideal triangulation with four ideal tetrahedra at each

crossing
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Octahedral decomposition

P+

P−

P2 P1
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What is a dilogarithm?

• Can compute complex volume by evaluating a special function called

the Rogers dilogarithm on the shape parameters of the tetrahedra

• Kashaev described a matrix analogue called the quantum dilogarithm

• Used it to define a knot invariant which turns out to be the colored

Jones at a root of unity (nontrivial to show!)

• The braiding defining JN uses four quantum dilogarithms, one for

each tetrahedron
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Another holonomy invariant

Quantum hyperbolic invariants

Baseilhac and Benedetti [BB04] constructed quantum hyperbolic

invariants of 3-manifolds with links inside them via state-sums and

triangulations.

• They used quantum dilogarithms, just like in our construction

• Their invariants appear to be closely related to our nonabelian

quantum dilogarithm.

• Our version is much more clearly related to the Jones polynomial

• We can also prove a relation with the torsion:
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Relation with the torsion

Theorem (Me [McP21])

For any link L and ρ ∈ X2(L) that does not have 1 as an eigenvalue,

J2(L, ρ)J2(L, ρ) = τ(S3 \ L, ρ)

where L is the mirror image and τ is the Redemeister torsion twisted by

ρ.

Proof idea.

There is a Schur-Weyl duality between the braiding for Uξ defining J2
and the twisted Burau representation defining τ . Need to use a

“quantum double” to get the norm-square on the left hand side.
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Constructing quantum holonomy

invariants



How to construct them

• I will now give a very rapid overview of some of the algebra used to

define these invariants

• Happy to discuss more details if you want to know them!
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Holonomy Reshetikhin-Turaev

• Recall that in the RT construction of knot invariants from

Uq = Uq(sl2), we think about putting a Uq-module V on each strand

of the knot K .

• For a pair (K , ρ), each strand has a meridian x and holonomy

ρ(x) ∈ SL2(C).

• We want to find a family of modules Vg parametrized by points of

SL2(C).

• Actual answer is a bit more complicated: let’s explain why.
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Roots of unity

Recall that for generic q, Uq-modules are essentially indexed by a single

integer (the highest weight), just like for ordinary sl2.

However, for q = ξ = exp(πi/N) a primitive 2Nth root of 1, Uξ-modules

are much more interesting.

Theorem

N-dimensional projective simple Uξ-modules are indexed by:

1. a (generic) point g ∈ SL2(C)

2. an Nth root µ of an eigenvalue of g

Why?
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Central characters

• Uq has generators E ,F ,K = qH (like sl2)

• At q = ξ, get central subalgebra Z0 = C[EN ,FN ,K±N ]

• For central characters χ : Z0 → C,

χ ∈ SpecZ0 ↔

([
χ(KN) 0

χ(KNFN) 1

]
,

[
1 χ(EN)

0 χ(KN)

])

↔

[
χ(KN) −χ(EN)

χ(KNFN) χ(KN)− χ(KNENFN)

]
∈ SL2(C)

• Action of central Casimir Ω given by Nth root, full center is

Z = Z0[Ω]/(polynomial relation)

• Characters χ : Z → C are in bijection with simple Uξ-modules.
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Factorized groups

• Uξ-modules are really graded by

the group SL2(C)∗ of pairs

χ = (χ+, χ−)

=

([
κ 0

φ 1

]
,

[
1 ε

0 κ

])

• This is birationally equivalent to

SL2(C), but not isomorphic as a

group.

• Leads to slightly unusual

description of πK .

• Usual description (Wirtinger

presentation) of knot group

from a diagram has one

generator for each arc.

• We instead want a groupoid

with two generators for each

segment.

• Path above a segment labeled

by χ gives χ+, path below gives

χ−
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Fundamental groupoid

x+
ix−i

i

The generators associated to

segment i

1

2 1′

2′

x−1 x+
2 x+

2′x
−
1′

There are relations at each crossing,

such as the above
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Colored braids

To represent (K , ρ) as a braid closure, decorate segments with characters

χ giving holonomies:

χ1

χ2

χ3 χ′′1

χ′3

χ′2

χ′1

The braid action on the χi is equivalently given by the rules on the

previous slide, or by the braiding on Uξ. It forms a biquandle.
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The colored braid groupoid

Just like we have braid groups for braids, we can organize these into a

groupoid:

Definition

The SL2(C)-colored braid groupoid BN(SL2(C)) is a category:

objects tuples (χ1, . . . , χn) of characters χi : Z0 → C

morphisms braids β : (χ1, . . . , χn)→ (χ′1, . . . , χ
′
n)

Closures of colored braids are links L plus ρ ∈ X(L).

Braid groups

The ordinary braid group is the component with χ1 = · · · = χn = id.

(Recall a groupoid with one object is a group.)
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Invariants from the braid groupoid

To define a holonomy invariant, we need

1. a functor F : BN(SL2(C))→ Uξ-Mod (must satisfy colored

Reidemeister moves!)

2. an trace on endomorphisms of Uξ-Mod

Theorem

Given such an F , the trace of F(β) is an invariant of the closure (L, ρ)

of β.

Getting the trace is trickier than normal because of non-semimplicity: need

to use modified dimensions/traces.
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Gauge invariance

It turns out that, given such a functor F , the associated invariant is

automatically gauge-invariant! Two pictures explain why:

Dχ

γ

χ

γ

D ′

γ

χ

γ

χ

Here D ′ is gauge-equivalent to D.
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Questions?
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Bonus: Why is it called a

quantum dilogarithm?



The dilogarithm

• The dilogarithm is

L2(x) = −
∫ x

0

log(1− z)

z
dz

and Rogers’ dilogarithm is

L(x) = L2(x) + log(1− x) log(x)/2.

L(x) can be used to compute complex volumes of tetrahedra, hence

of manifolds.

• It satisfies the 5-term relation

L(x) + L(y)− L(xy) = L

(
x − xy

1− xy

)
+ L

(
y − xy

1− xy

)
which is related to the 3-2 move on triangulations



The quantum dilogarithm

• Faddeev and Kashaev showed the q-series

Ψ(x) =
∞∏
n=1

(1− xqn)

is a q-analog of L(x) and satisfies a noncommutative 5-term relation.

• The cyclic quantum dilogarithm

L(B,A|n) =
n∏

k=1

(1− ξ2kB)/A

for AN + BN = 1 is a root-of-unity analogue of Ψ(x).



Link invariants from the quantum dilogarithm

• By taking a certain singular limit Kashaev defined his quantum

dilogarithm invariant.

• By replacing Rogers dilogarithms L(x) with cyclic dilogarithms

L(B,A|n), Baseilhac and Benedetti defined holonomy invariants BN

for triangulated 3-manifolds with links inside them.

• BN is constructed as a state-sum, with one function L(B,A|n) for

each tetrahedron.



The nonabelian quantum dilogarithm

• Even though the definition of JN appears quite different from BN ,

recent computations of the braiding show they are closely related.

• In particular, the braiding defined by JN factors into a product of four

linear maps, each of which is associated to a tetrahedron in the

octahedral decomposition of the knot complement.

• To emphasize the connection with Kashaev’s construction and the

incorporation of nonabelian ρ ∈ XN(K ), we used the name

nonabelian quantum dilogarithm.



The nonabelian quantum

dilogarithm and the torsion



An explicit relationship

Theorem (C. [McP21])

For any ρ ∈ X2(K ),

J2(K , ρ)J2(K , ρ) = τ(K , ρ)

where K is the mirror image of K .

Comparing

∇K (t)∇K (t) = τ(K , αt)

we think of J2(K , ρ) as a nonabelian Conway potential.

How do we compute the right-hand side? Use the Burau representation.



The Burau representation

Consider colored braids on b strands. Write ρ = (χ1, . . . , χb) for an object

of B2(SL2(C)), equivalently a representation

ρ : π1(Db)→ SL2(C)

where Db is a b-punctured disc. Let β be a braid on b stands, i.e. an

element of Map(Db, ∂Db). As a colored braid, it becomes a morphism

β : ρ→ ρ′.

Definition

The Burau representation is the action on twisted locally-finite homology:

B(β) : H1(Db; ρ)→ H1(Db; ρ′)

induced by the action of β on Db.



Computing the torsion

Proposition

If (K , ρ) is the closure of β, then

τ(K , ρ) =
det(1− B(β))

det(1− ρ(y))

y is a path around every strand, as above.



Determinant to trace

To make this a trace, let
∧
B be the action on the exterior algebra of

homology. Then

str
(∧
B(β)

)
= det(1− B(β)).

Here str is the Z/2-graded trace: multiply action on degree k part by

(−1)k .



Multiplicity spaces

We want to understand J2(β) : J2(ρ)→ J2(ρ), ρ = (χ1, . . . , χb). First

we need to understand J2(ρ). Use:

Proposition

J2(ρ) =
b⊗

i=1

Vχi
∼= X+ ⊗C Vχ+ ⊕ X− ⊗C Vχ−

Here:

• χ± are characters corresponding to the total holonomy ρ(y)

• there are two because there are two choices ±µ of fractional

eigenvalue for ρ(y)

• Action of J2(β) factors through multiplicity spaces X±



Schur-Weyl duality

Theorem (Me [McP21])

There is a subalgebra Cb of U⊗bξ that

1. (super)commutes with the image of ∆U in the tensor power,

2. is isomorphic as a vector space to
∧
B(χ1, . . . , χb),

3. such that the braid group action on Cb ⊆ U⊗bξ agrees with B.

Compare Schur-Weyl duality between tensor powers of SLn and the

symmetric group.



Computing J2

Corollary (Wrong)

The Z/2-graded multiplicity space X = X+ ⊕ X− is isomorphic to∧
B(ρ). This is compatible with the braid action, so J2(β) acts on X by∧
B(β).

The theorem about τ(K , ρ) would follow immediately, except that this is

false!



Fixing the idea

• The problem is that Cb does not act faithfully on J2(χ1, . . . , χn).

• Among other reasons, dimensions don’t match.

• To fix, consider a “quantum double”

T2 = J2 � J 2

• Then the theorem works and

τ(K , ρ) = T2(K , ρ) (by Schur-Weyl)

= J2(K , ρ)J2(K , ρ) (by definition)
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